Bradley J Roth, Prajit Khooblall, Navid Leelani, Mangesh Suryavanshi, Andrew Shumaker, Glenn Werneburg, Aaron Miller, Petar Bajic
{"title":"Antimicrobial resistance and biofilm formation of penile prosthesis isolates: insights from in-vitro analysis.","authors":"Bradley J Roth, Prajit Khooblall, Navid Leelani, Mangesh Suryavanshi, Andrew Shumaker, Glenn Werneburg, Aaron Miller, Petar Bajic","doi":"10.1093/jsxmed/qdaf001","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Inflatable penile prostheses (IPPs) have been shown to harbor biofilms in the presence and absence of infection despite exposure to various antimicrobials. Microbes persisting on IPPs following antibiotic exposure have not been adequately studied to assess biofilm formation capacity and antibiotic resistance.</p><p><strong>Aim: </strong>In this study, we aimed to assess these properties of microbes obtained from explanted infected and non-infected IPPS using an in vitro model.</p><p><strong>Methods: </strong>35 bacterial isolates were grown and tested against various single-agent or multiple agent antibiotic regimens including: bacitracin, cefaclor, cefazolin, gentamicin, levofloxacin, trimethoprim-sulfamethoxazole, tobramycin, vancomycin, piperacillin/tazobactam, gentamicin + piperacillin/tazobactam, gentamicin + cefazolin, and gentamicin + vancomycin. Zones of inhibition were averaged for each sample site and species. Statistics were analyzed with Holm's corrected, one-sample t-tests against a null hypothesis of 0. Isolates were also allowed to form biofilms in a 96-well polyvinyl plate and absorbance was tested at 570 nm using a microplate reader.</p><p><strong>Outcomes: </strong>Resistance was determined via clinical guidelines or previously established literature, and the mean and standard deviation of biofilm absorbance values were calculated and normalized to the optical density600 of the bacterial inoculum.</p><p><strong>Results: </strong>Every species tested was able to form robust biofilms with the exception of Staphylococcus warneri. As expected, most bacteria were resistant to common perioperative antimicrobial prophylaxis. Gentamicin dual therapy demonstrated somewhat greater efficacy.</p><p><strong>Strengths and limitations: </strong>This study examines a broad range of antimicrobials against clinically obtained bacterial isolates. However, not all species and antibiotics tested had standardized breakpoints, requiring the use of surrogate values from the literature. The microbes included in this study and their resistance genes are expectedly biased towards those that survived antibiotic exposure, and thus reflect the types of microbes which might \"survive\" in vivo exposure following revisional surgery.</p><p><strong>Clinical translation: </strong>Despite exposure to antimicrobials, bacteria isolated during penile prosthesis revision for both infected and non-infected cases exhibit biofilm forming capacity and extensive antibiotic resistance patterns in vitro. These microbes merit further investigation to understand when simple colonization vs re-infection might occur.</p><p><strong>Conclusions: </strong>Although increasing evidence supports the concept that all IPPs harbor biofilms, even in the absence of infection, a deeper understanding of the characteristics of bacteria that survive revisional surgery is warranted. This study demonstrated extensive biofilm forming capabilities, and resistance patterns among bacteria isolated from both non-infected and infected IPP revision surgeries. Further investigation is warranted to determine why some devices become infected while others remain colonized but non-infected.</p>","PeriodicalId":51100,"journal":{"name":"Journal of Sexual Medicine","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sexual Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/jsxmed/qdaf001","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"UROLOGY & NEPHROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Inflatable penile prostheses (IPPs) have been shown to harbor biofilms in the presence and absence of infection despite exposure to various antimicrobials. Microbes persisting on IPPs following antibiotic exposure have not been adequately studied to assess biofilm formation capacity and antibiotic resistance.
Aim: In this study, we aimed to assess these properties of microbes obtained from explanted infected and non-infected IPPS using an in vitro model.
Methods: 35 bacterial isolates were grown and tested against various single-agent or multiple agent antibiotic regimens including: bacitracin, cefaclor, cefazolin, gentamicin, levofloxacin, trimethoprim-sulfamethoxazole, tobramycin, vancomycin, piperacillin/tazobactam, gentamicin + piperacillin/tazobactam, gentamicin + cefazolin, and gentamicin + vancomycin. Zones of inhibition were averaged for each sample site and species. Statistics were analyzed with Holm's corrected, one-sample t-tests against a null hypothesis of 0. Isolates were also allowed to form biofilms in a 96-well polyvinyl plate and absorbance was tested at 570 nm using a microplate reader.
Outcomes: Resistance was determined via clinical guidelines or previously established literature, and the mean and standard deviation of biofilm absorbance values were calculated and normalized to the optical density600 of the bacterial inoculum.
Results: Every species tested was able to form robust biofilms with the exception of Staphylococcus warneri. As expected, most bacteria were resistant to common perioperative antimicrobial prophylaxis. Gentamicin dual therapy demonstrated somewhat greater efficacy.
Strengths and limitations: This study examines a broad range of antimicrobials against clinically obtained bacterial isolates. However, not all species and antibiotics tested had standardized breakpoints, requiring the use of surrogate values from the literature. The microbes included in this study and their resistance genes are expectedly biased towards those that survived antibiotic exposure, and thus reflect the types of microbes which might "survive" in vivo exposure following revisional surgery.
Clinical translation: Despite exposure to antimicrobials, bacteria isolated during penile prosthesis revision for both infected and non-infected cases exhibit biofilm forming capacity and extensive antibiotic resistance patterns in vitro. These microbes merit further investigation to understand when simple colonization vs re-infection might occur.
Conclusions: Although increasing evidence supports the concept that all IPPs harbor biofilms, even in the absence of infection, a deeper understanding of the characteristics of bacteria that survive revisional surgery is warranted. This study demonstrated extensive biofilm forming capabilities, and resistance patterns among bacteria isolated from both non-infected and infected IPP revision surgeries. Further investigation is warranted to determine why some devices become infected while others remain colonized but non-infected.
期刊介绍:
The Journal of Sexual Medicine publishes multidisciplinary basic science and clinical research to define and understand the scientific basis of male, female, and couples sexual function and dysfunction. As an official journal of the International Society for Sexual Medicine and the International Society for the Study of Women''s Sexual Health, it provides healthcare professionals in sexual medicine with essential educational content and promotes the exchange of scientific information generated from experimental and clinical research.
The Journal of Sexual Medicine includes basic science and clinical research studies in the psychologic and biologic aspects of male, female, and couples sexual function and dysfunction, and highlights new observations and research, results with innovative treatments and all other topics relevant to clinical sexual medicine.
The objective of The Journal of Sexual Medicine is to serve as an interdisciplinary forum to integrate the exchange among disciplines concerned with the whole field of human sexuality. The journal accomplishes this objective by publishing original articles, as well as other scientific and educational documents that support the mission of the International Society for Sexual Medicine.