Evaluating the method reproducibility of deep learning models in biodiversity research.

IF 2.5 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE PeerJ Computer Science Pub Date : 2025-02-05 eCollection Date: 2025-01-01 DOI:10.7717/peerj-cs.2618
Waqas Ahmed, Vamsi Krishna Kommineni, Birgitta König-Ries, Jitendra Gaikwad, Luiz Gadelha, Sheeba Samuel
{"title":"Evaluating the method reproducibility of deep learning models in biodiversity research.","authors":"Waqas Ahmed, Vamsi Krishna Kommineni, Birgitta König-Ries, Jitendra Gaikwad, Luiz Gadelha, Sheeba Samuel","doi":"10.7717/peerj-cs.2618","DOIUrl":null,"url":null,"abstract":"<p><p>Artificial intelligence (AI) is revolutionizing biodiversity research by enabling advanced data analysis, species identification, and habitats monitoring, thereby enhancing conservation efforts. Ensuring reproducibility in AI-driven biodiversity research is crucial for fostering transparency, verifying results, and promoting the credibility of ecological findings. This study investigates the reproducibility of deep learning (DL) methods within the biodiversity research. We design a methodology for evaluating the reproducibility of biodiversity-related publications that employ DL techniques across three stages. We define ten variables essential for method reproducibility, divided into four categories: resource requirements, methodological information, uncontrolled randomness, and statistical considerations. These categories subsequently serve as the basis for defining different levels of reproducibility. We manually extract the availability of these variables from a curated dataset comprising 100 publications identified using the keywords provided by biodiversity experts. Our study shows that a dataset is shared in 50% of the publications; however, a significant number of the publications lack comprehensive information on deep learning methods, including details regarding randomness.</p>","PeriodicalId":54224,"journal":{"name":"PeerJ Computer Science","volume":"11 ","pages":"e2618"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11888858/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.7717/peerj-cs.2618","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Artificial intelligence (AI) is revolutionizing biodiversity research by enabling advanced data analysis, species identification, and habitats monitoring, thereby enhancing conservation efforts. Ensuring reproducibility in AI-driven biodiversity research is crucial for fostering transparency, verifying results, and promoting the credibility of ecological findings. This study investigates the reproducibility of deep learning (DL) methods within the biodiversity research. We design a methodology for evaluating the reproducibility of biodiversity-related publications that employ DL techniques across three stages. We define ten variables essential for method reproducibility, divided into four categories: resource requirements, methodological information, uncontrolled randomness, and statistical considerations. These categories subsequently serve as the basis for defining different levels of reproducibility. We manually extract the availability of these variables from a curated dataset comprising 100 publications identified using the keywords provided by biodiversity experts. Our study shows that a dataset is shared in 50% of the publications; however, a significant number of the publications lack comprehensive information on deep learning methods, including details regarding randomness.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
评估生物多样性研究中深度学习模型方法的可重复性。
人工智能(AI)通过实现先进的数据分析、物种识别和栖息地监测,从而加强了保护工作,正在彻底改变生物多样性研究。确保人工智能驱动的生物多样性研究的可重复性对于提高透明度、验证结果和提高生态发现的可信度至关重要。本研究探讨了生物多样性研究中深度学习(DL)方法的可重复性。我们设计了一种方法来评估生物多样性相关出版物的可重复性,该方法采用DL技术跨越三个阶段。我们定义了10个对方法可重复性至关重要的变量,分为四类:资源需求、方法信息、非控制随机性和统计考虑。这些类别随后作为定义不同可重复性水平的基础。我们通过生物多样性专家提供的关键词,从包含100篇出版物的精选数据集中手动提取这些变量的可用性。我们的研究表明,一个数据集在50%的出版物中共享;然而,大量的出版物缺乏关于深度学习方法的全面信息,包括关于随机性的细节。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
PeerJ Computer Science
PeerJ Computer Science Computer Science-General Computer Science
CiteScore
6.10
自引率
5.30%
发文量
332
审稿时长
10 weeks
期刊介绍: PeerJ Computer Science is the new open access journal covering all subject areas in computer science, with the backing of a prestigious advisory board and more than 300 academic editors.
期刊最新文献
Robust coffee plant disease classification using deep learning and advanced feature engineering techniques. KomoTrip: a multi-day travel itinerary recommendation method based on the discrete komodo mlipir algorithm. Multimodal image fusion for enhanced vehicle identification in intelligent transport. CrossAlignNet: a self-supervised feature learning framework for 3D point cloud understanding. Hybrid ARIMA-LSTM for COVID-19 forecasting: a comparative AI modeling study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1