Immunotherapy in cervical cancer: an innovative approach for better treatment outcomes.

Q3 Medicine Exploration of targeted anti-tumor therapy Pub Date : 2025-03-02 eCollection Date: 2025-01-01 DOI:10.37349/etat.2025.1002296
Treshita Dey, Sushma Agrawal
{"title":"Immunotherapy in cervical cancer: an innovative approach for better treatment outcomes.","authors":"Treshita Dey, Sushma Agrawal","doi":"10.37349/etat.2025.1002296","DOIUrl":null,"url":null,"abstract":"<p><p>Cervical cancer remains a significant global health challenge, ranking as the fourth most common cancer among women. Persistent infection with high-risk human papillomavirus (HPV) is the primary etiological factor, leading to immune evasion mechanisms that promote tumor development and progression. Immunotherapy has emerged as a transformative approach in the management of cervical cancer, aiming to restore and enhance the body's immune response against tumor cells. Checkpoint inhibitors targeting programmed death-1 (PD-1) and its ligand (PD-L1) have shown promising results in patients with advanced or recurrent cervical cancer. Pembrolizumab, a PD-1 inhibitor, has been approved for PD-L1-positive cervical cancer, demonstrating durable responses. However, low response rates necessitate exploration of combination strategies. Trials are underway combining checkpoint inhibitors with chemotherapy, radiation, or other immunotherapeutic agents to enhance efficacy. Therapeutic vaccines targeting HPV antigens, such as E6 and E7 oncoproteins, are also a focus of active research. These vaccines aim to elicit robust cytotoxic T-cell responses, offering a potential strategy for early intervention and disease control. Adoptive T-cell therapies, including engineered T-cell receptor (TCR) and chimeric antigen receptor (CAR)-T cells, represent cutting-edge advancements, though challenges with tumor heterogeneity and off-target effects persist. However, challenges such as limited response rates and immune evasion mechanisms remain. The tumor microenvironment (TME) in cervical cancer, characterized by immunosuppressive cells and cytokines, poses a significant barrier to effective immunotherapy. Emerging approaches targeting the TME, such as cytokine modulation, hold promise in overcoming resistance mechanisms. Key gaps include a lack of biomarkers for patient selection, insufficient understanding of TME dynamics, and suboptimal strategies for overcoming antigen heterogeneity and immune resistance. This review addresses these issues by providing a comprehensive analysis of the current landscape of cervical cancer immunotherapy, identifying critical barriers, and highlighting emerging approaches, such as combination therapies, novel immune targets, and strategies to modulate the TME, to guide future research and clinical practice.</p>","PeriodicalId":73002,"journal":{"name":"Exploration of targeted anti-tumor therapy","volume":"6 ","pages":"1002296"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11886377/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Exploration of targeted anti-tumor therapy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37349/etat.2025.1002296","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Cervical cancer remains a significant global health challenge, ranking as the fourth most common cancer among women. Persistent infection with high-risk human papillomavirus (HPV) is the primary etiological factor, leading to immune evasion mechanisms that promote tumor development and progression. Immunotherapy has emerged as a transformative approach in the management of cervical cancer, aiming to restore and enhance the body's immune response against tumor cells. Checkpoint inhibitors targeting programmed death-1 (PD-1) and its ligand (PD-L1) have shown promising results in patients with advanced or recurrent cervical cancer. Pembrolizumab, a PD-1 inhibitor, has been approved for PD-L1-positive cervical cancer, demonstrating durable responses. However, low response rates necessitate exploration of combination strategies. Trials are underway combining checkpoint inhibitors with chemotherapy, radiation, or other immunotherapeutic agents to enhance efficacy. Therapeutic vaccines targeting HPV antigens, such as E6 and E7 oncoproteins, are also a focus of active research. These vaccines aim to elicit robust cytotoxic T-cell responses, offering a potential strategy for early intervention and disease control. Adoptive T-cell therapies, including engineered T-cell receptor (TCR) and chimeric antigen receptor (CAR)-T cells, represent cutting-edge advancements, though challenges with tumor heterogeneity and off-target effects persist. However, challenges such as limited response rates and immune evasion mechanisms remain. The tumor microenvironment (TME) in cervical cancer, characterized by immunosuppressive cells and cytokines, poses a significant barrier to effective immunotherapy. Emerging approaches targeting the TME, such as cytokine modulation, hold promise in overcoming resistance mechanisms. Key gaps include a lack of biomarkers for patient selection, insufficient understanding of TME dynamics, and suboptimal strategies for overcoming antigen heterogeneity and immune resistance. This review addresses these issues by providing a comprehensive analysis of the current landscape of cervical cancer immunotherapy, identifying critical barriers, and highlighting emerging approaches, such as combination therapies, novel immune targets, and strategies to modulate the TME, to guide future research and clinical practice.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
审稿时长
13 weeks
期刊最新文献
Immunotherapy in cervical cancer: an innovative approach for better treatment outcomes. Genomic alterations in the WNT/β-catenin pathway and resistance of colorectal cancer cells to pathway-targeting therapies. Unmasking the potential: mechanisms of neuroinflammatory modulation by oncolytic viruses in glioblastoma. Elacestrant in hormone receptor-positive metastatic breast cancer: a post-hoc analysis. Releasing the brakes: the role of immune checkpoint inhibitors in laryngeal cancer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1