Uncovering quantum many-body scars with quantum machine learning

IF 6.6 1区 物理与天体物理 Q1 PHYSICS, APPLIED npj Quantum Information Pub Date : 2025-03-11 DOI:10.1038/s41534-025-01005-0
Jia-Jin Feng, Bingzhi Zhang, Zhi-Cheng Yang, Quntao Zhuang
{"title":"Uncovering quantum many-body scars with quantum machine learning","authors":"Jia-Jin Feng, Bingzhi Zhang, Zhi-Cheng Yang, Quntao Zhuang","doi":"10.1038/s41534-025-01005-0","DOIUrl":null,"url":null,"abstract":"<p>Quantum many-body scars are rare eigenstates hidden within the chaotic spectra of many-body systems, representing a weak violation of the eigenstate thermalization hypothesis (ETH). Identifying these scars, as well as other non-thermal states in complex quantum systems, remains a significant challenge. Besides exact scar states, the nature of other non-thermal states lacking simple analytical characterization remains an open question. In this study, we employ tools from quantum machine learning—specifically, (enhanced) quantum convolutional neural networks (QCNNs), to explore hidden non-thermal states in chaotic many-body systems. Our simulations demonstrate that QCNNs achieve over 99% single-shot measurement accuracy in identifying all known scars. Furthermore, we successfully identify new non-thermal states in models such as the xorX model, the PXP model, and the far-coupling Su-Schrieffer-Heeger model. In the xorX model, some of these non-thermal states can be approximately described as spin-wave modes of specific quasiparticles. We further develop effective tight-binding Hamiltonians within the quasiparticle subspace to capture key features of these many-body eigenstates. Finally, we validate the performance of QCNNs on IBM quantum devices, achieving single-shot measurement accuracy exceeding 63% under real-world noise and errors, with the aid of error mitigation techniques. Our results underscore the potential of QCNNs to uncover hidden non-thermal states in quantum many-body systems.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"56 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Information","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41534-025-01005-0","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Quantum many-body scars are rare eigenstates hidden within the chaotic spectra of many-body systems, representing a weak violation of the eigenstate thermalization hypothesis (ETH). Identifying these scars, as well as other non-thermal states in complex quantum systems, remains a significant challenge. Besides exact scar states, the nature of other non-thermal states lacking simple analytical characterization remains an open question. In this study, we employ tools from quantum machine learning—specifically, (enhanced) quantum convolutional neural networks (QCNNs), to explore hidden non-thermal states in chaotic many-body systems. Our simulations demonstrate that QCNNs achieve over 99% single-shot measurement accuracy in identifying all known scars. Furthermore, we successfully identify new non-thermal states in models such as the xorX model, the PXP model, and the far-coupling Su-Schrieffer-Heeger model. In the xorX model, some of these non-thermal states can be approximately described as spin-wave modes of specific quasiparticles. We further develop effective tight-binding Hamiltonians within the quasiparticle subspace to capture key features of these many-body eigenstates. Finally, we validate the performance of QCNNs on IBM quantum devices, achieving single-shot measurement accuracy exceeding 63% under real-world noise and errors, with the aid of error mitigation techniques. Our results underscore the potential of QCNNs to uncover hidden non-thermal states in quantum many-body systems.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
量子多体疤痕是隐藏在多体系统混沌谱中的罕见特征态,是对特征态热化假说(ETH)的微弱违反。识别这些疤痕以及复杂量子系统中的其他非热态仍然是一项重大挑战。除了确切的疤痕态,其他缺乏简单分析表征的非热态的性质仍然是一个未决问题。在这项研究中,我们利用量子机器学习工具--特别是(增强的)量子卷积神经网络(QCNN)--来探索混沌多体系统中隐藏的非热态。我们的模拟证明,QCNN 在识别所有已知疤痕方面的单次测量准确率超过 99%。此外,我们还在 xorX 模型、PXP 模型和远耦合 Su-Schrieffer-Heeger 模型中成功识别了新的非热状态。在 xorX 模型中,其中一些非热态可以近似地描述为特定准粒子的自旋波模式。我们进一步在类粒子子空间内开发了有效的紧密结合哈密顿,以捕捉这些多体特征态的关键特征。最后,我们在 IBM 量子设备上验证了 QCNN 的性能,借助误差缓解技术,在真实世界的噪声和误差条件下实现了超过 63% 的单次测量精度。我们的研究结果强调了 QCNN 在揭示量子多体系统中隐藏的非热态方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
npj Quantum Information
npj Quantum Information Computer Science-Computer Science (miscellaneous)
CiteScore
13.70
自引率
3.90%
发文量
130
审稿时长
29 weeks
期刊介绍: The scope of npj Quantum Information spans across all relevant disciplines, fields, approaches and levels and so considers outstanding work ranging from fundamental research to applications and technologies.
期刊最新文献
Networking quantum networks with minimum cost aggregation High-dimensional entanglement witnessed by correlations in arbitrary bases Realizing ultrahigh capacity quantum superdense coding on quantum photonic chip Quantum-enhanced dark matter detection with in-cavity control: mitigating the Rayleigh curse Halving the cost of quantum algorithms with randomization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1