Methane emissions from thermokarst lakes must emphasize the ice-melting impact on the Tibetan Plateau

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Communications Pub Date : 2025-03-11 DOI:10.1038/s41467-025-57745-2
Cuicui Mu, Pengsi Lei, Mei Mu, Chunling Zhang, Zhensong Zhou, Jinyue Song, Yunjie Jia, Chenyan Fan, Xiaoqing Peng, Guofei Zhang, Yuanhe Yang, Lei Wang, Dongfeng Li, Chunlin Song, Genxu Wang, Zhen Zhang
{"title":"Methane emissions from thermokarst lakes must emphasize the ice-melting impact on the Tibetan Plateau","authors":"Cuicui Mu, Pengsi Lei, Mei Mu, Chunling Zhang, Zhensong Zhou, Jinyue Song, Yunjie Jia, Chenyan Fan, Xiaoqing Peng, Guofei Zhang, Yuanhe Yang, Lei Wang, Dongfeng Li, Chunlin Song, Genxu Wang, Zhen Zhang","doi":"10.1038/s41467-025-57745-2","DOIUrl":null,"url":null,"abstract":"<p>Thermokarst lakes, serving as significant sources of methane (CH<sub>4</sub>), play a crucial role in affecting the feedback of permafrost carbon cycle to global warming. However, accurately assessing CH<sub>4</sub> emissions from these lakes remains challenging due to limited observations during lake ice melting periods. In this study, by integrating field surveys with machine learning modeling, we offer a comprehensive assessment of present and future CH<sub>4</sub> emissions from thermokarst lakes on the Tibetan Plateau. Our results reveal that the previously underestimated CH<sub>4</sub> release from lake ice bubble and water storage during ice melting periods is 11.2 ± 1.6 Gg C of CH<sub>4</sub>, accounting for 17 ± 4% of the annual total release from lakes. Despite thermokarst lakes cover only 0.2% of the permafrost area, they annually emit 65.5 ± 10.0 Gg C of CH<sub>4</sub>, which offsets 6.4% of the net carbon sink in alpine grasslands on the plateau. Considering the loss of lake ice, the expansion of thermokarst lakes is projected to lead to 1.1–1.2 folds increase in CH<sub>4</sub> emissions by 2100. Our study allows foreseeing future CH<sub>4</sub> emissions from the rapid expanding thermokarst lakes and sheds new lights on processes controlling the carbon-climate feedback in alpine permafrost ecosystems.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"4 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-57745-2","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Thermokarst lakes, serving as significant sources of methane (CH4), play a crucial role in affecting the feedback of permafrost carbon cycle to global warming. However, accurately assessing CH4 emissions from these lakes remains challenging due to limited observations during lake ice melting periods. In this study, by integrating field surveys with machine learning modeling, we offer a comprehensive assessment of present and future CH4 emissions from thermokarst lakes on the Tibetan Plateau. Our results reveal that the previously underestimated CH4 release from lake ice bubble and water storage during ice melting periods is 11.2 ± 1.6 Gg C of CH4, accounting for 17 ± 4% of the annual total release from lakes. Despite thermokarst lakes cover only 0.2% of the permafrost area, they annually emit 65.5 ± 10.0 Gg C of CH4, which offsets 6.4% of the net carbon sink in alpine grasslands on the plateau. Considering the loss of lake ice, the expansion of thermokarst lakes is projected to lead to 1.1–1.2 folds increase in CH4 emissions by 2100. Our study allows foreseeing future CH4 emissions from the rapid expanding thermokarst lakes and sheds new lights on processes controlling the carbon-climate feedback in alpine permafrost ecosystems.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
期刊最新文献
Editorial Expression of Concern: ATG5 is induced by DNA-damaging agents and promotes mitotic catastrophe independent of autophagy Dact1 induces Dishevelled oligomerization to facilitate binding partner switch and signalosome formation during convergent extension A data-driven generative strategy to avoid reward hacking in multi-objective molecular design Methane emissions from thermokarst lakes must emphasize the ice-melting impact on the Tibetan Plateau Structural basis for intrinsic strand displacement activity of mitochondrial DNA polymerase
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1