{"title":"zCeph: Design and implementation of a ZNS-friendly distributed file system","authors":"Jin Yong Ha , Yongseok Son","doi":"10.1016/j.future.2025.107763","DOIUrl":null,"url":null,"abstract":"<div><div>This article presents <span>zCeph</span>, a ZNS-friendly distributed file system designed to efficiently utilize zoned namespace (ZNS) SSDs. Specifically, we first propose <span>MZAllocator</span> which enables multiple zones to be utilized simultaneously to maximize the performance of ZNS SSDs. Second, we adopt an <span>append</span> command to eliminate the need for synchronization in write ordering within distributed storage systems to improve scalability. Third, we present <span>zBlueFS</span>, a ZNS-aware user-level file system based on BlueFS to update the metadata on the ZNS SSD without a conventional SSD. Finally, we propose a delta write technique, <span>DeltaWriter</span>, which writes only a modified part of the metadata (i.e., onode) to reduce read–modify–write overhead whenever the metadata are updated. We implement <span>zCeph</span> with four techniques based on Ceph, an open-source distributed file system. Further, we evaluate <span>zCeph</span> on a pair of 48-core machines with ZNS SSDs using micro and macro benchmarks, and the results reveal that <span>zCeph</span> improves performance by up to 4.2<span><math><mo>×</mo></math></span> and 8.8<span><math><mo>×</mo></math></span> compared with Ceph, respectively.</div></div>","PeriodicalId":55132,"journal":{"name":"Future Generation Computer Systems-The International Journal of Escience","volume":"169 ","pages":"Article 107763"},"PeriodicalIF":6.2000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Generation Computer Systems-The International Journal of Escience","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167739X25000585","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
This article presents zCeph, a ZNS-friendly distributed file system designed to efficiently utilize zoned namespace (ZNS) SSDs. Specifically, we first propose MZAllocator which enables multiple zones to be utilized simultaneously to maximize the performance of ZNS SSDs. Second, we adopt an append command to eliminate the need for synchronization in write ordering within distributed storage systems to improve scalability. Third, we present zBlueFS, a ZNS-aware user-level file system based on BlueFS to update the metadata on the ZNS SSD without a conventional SSD. Finally, we propose a delta write technique, DeltaWriter, which writes only a modified part of the metadata (i.e., onode) to reduce read–modify–write overhead whenever the metadata are updated. We implement zCeph with four techniques based on Ceph, an open-source distributed file system. Further, we evaluate zCeph on a pair of 48-core machines with ZNS SSDs using micro and macro benchmarks, and the results reveal that zCeph improves performance by up to 4.2 and 8.8 compared with Ceph, respectively.
期刊介绍:
Computing infrastructures and systems are constantly evolving, resulting in increasingly complex and collaborative scientific applications. To cope with these advancements, there is a growing need for collaborative tools that can effectively map, control, and execute these applications.
Furthermore, with the explosion of Big Data, there is a requirement for innovative methods and infrastructures to collect, analyze, and derive meaningful insights from the vast amount of data generated. This necessitates the integration of computational and storage capabilities, databases, sensors, and human collaboration.
Future Generation Computer Systems aims to pioneer advancements in distributed systems, collaborative environments, high-performance computing, and Big Data analytics. It strives to stay at the forefront of developments in grids, clouds, and the Internet of Things (IoT) to effectively address the challenges posed by these wide-area, fully distributed sensing and computing systems.