{"title":"PlotToSat: A tool for generating time-series signatures from Sentinel-1 and Sentinel-2 at field-based plots for machine learning applications","authors":"Milto Miltiadou , Stuart Grieve , Paloma Ruiz-Benito , Julen Astigarraga , Verónica Cruz-Alonso , Julián Tijerín Triviño , Emily R. Lines","doi":"10.1016/j.envsoft.2025.106395","DOIUrl":null,"url":null,"abstract":"<div><div>PlotToSat offers a practical and time efficient way to the challenge of extracting time-series from multiple Earth Observation (EO) datasets at numerous plots spread across a landscape. This opens up new opportunities to understand and model various ecosystems. Regarding forest ecology, plot networks play a vital role in monitoring and understanding the dynamics of forest ecosystems. These networks often contain thousands of plots arranged systematically to represent an ecosystem. Combining field data collected at plots with EO time-series will allow us to better understand phenology and ecosystem composition, structure and distribution. Linking plot networks with EO data without PlotToSat is time consuming and computational expensive because plots are small and spread out, requiring data from multiple satellite tiles. PlotToSat processed a full year of multi-tile Sentinel-1 and Sentinel-2 data (estimated 18.3TB) at 15,962 plots from the fourth Spanish Forest Inventory in less than 24 h. PlotToSat, implemented using the Python API of Google Earth Engine, offers a new and unique workflow that is innovative due to its efficient, scalable and adaptable implementation. It supports Sentinel-1 and Sentinel-2 data, but its flexible design eases integration of additional EO datasets. New environmental modelling is expected to emerge facilitating EO time-series analyses and investigating interactive effects of environmental drivers.</div></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"188 ","pages":"Article 106395"},"PeriodicalIF":4.8000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364815225000799","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
PlotToSat offers a practical and time efficient way to the challenge of extracting time-series from multiple Earth Observation (EO) datasets at numerous plots spread across a landscape. This opens up new opportunities to understand and model various ecosystems. Regarding forest ecology, plot networks play a vital role in monitoring and understanding the dynamics of forest ecosystems. These networks often contain thousands of plots arranged systematically to represent an ecosystem. Combining field data collected at plots with EO time-series will allow us to better understand phenology and ecosystem composition, structure and distribution. Linking plot networks with EO data without PlotToSat is time consuming and computational expensive because plots are small and spread out, requiring data from multiple satellite tiles. PlotToSat processed a full year of multi-tile Sentinel-1 and Sentinel-2 data (estimated 18.3TB) at 15,962 plots from the fourth Spanish Forest Inventory in less than 24 h. PlotToSat, implemented using the Python API of Google Earth Engine, offers a new and unique workflow that is innovative due to its efficient, scalable and adaptable implementation. It supports Sentinel-1 and Sentinel-2 data, but its flexible design eases integration of additional EO datasets. New environmental modelling is expected to emerge facilitating EO time-series analyses and investigating interactive effects of environmental drivers.
期刊介绍:
Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.