Quantify relationships between bike network connectivity and bike safety: A comparative analysis of connectivity metrics conducted in two California cities

IF 7.1 1区 地球科学 Q1 ENVIRONMENTAL STUDIES Computers Environment and Urban Systems Pub Date : 2025-03-11 DOI:10.1016/j.compenvurbsys.2025.102271
Jiahua Chen , Peter Kedron , Trisalyn Nelson , Dan Willett , Achituv Cohen , Colin Ferster
{"title":"Quantify relationships between bike network connectivity and bike safety: A comparative analysis of connectivity metrics conducted in two California cities","authors":"Jiahua Chen ,&nbsp;Peter Kedron ,&nbsp;Trisalyn Nelson ,&nbsp;Dan Willett ,&nbsp;Achituv Cohen ,&nbsp;Colin Ferster","doi":"10.1016/j.compenvurbsys.2025.102271","DOIUrl":null,"url":null,"abstract":"<div><div>To motivate people to use bikes for transportation, cities are shifting their focus from constructing isolated bike lanes to building interconnected bike networks. The effectiveness of these networks is measured by their level of connectivity, specifically how easily individuals of all ages and abilities can reach their destinations by bike. While most researchers and policymakers hypothesize that well-connected bike networks will reduce crash risk by offering bicyclists extended protection from traffic, most studies find positive or null associations between network connectivity and bike crashes. This discrepancy may arise either from actual processes, such as increased ridership in high-traffic areas, or from variability in how connectivity is measured. Our study aims to understand relationships between bike safety and various connectivity metrics at the neighborhood level by deconstructing and comparing different metrics. We critique previous constructs of density-based metrics rely solely on bike infrastructure and introduce new density-based and routing-based metrics derived from low-stress networks. Using a negative binomial regression model, we examine the association between bike crashes and connectivity metrics across 125 block groups in Santa Barbara and Goleta, California. We find that increased density-based connectivity in both bike infrastructure and low-stress networks correlates with fewer crashes. In contrast, routing-based connectivity measures, which reflect bike access to key destinations, are positively associated with crashes. We conclude that different connectivity metrics can alter the direction of connectivity-safety associations. Our proposed metrics, which incorporate low-stress networks and routing algorithms, provide a more nuanced understanding of how connectivity is related to bicycling safety.</div></div>","PeriodicalId":48241,"journal":{"name":"Computers Environment and Urban Systems","volume":"119 ","pages":"Article 102271"},"PeriodicalIF":7.1000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers Environment and Urban Systems","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0198971525000249","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL STUDIES","Score":null,"Total":0}
引用次数: 0

Abstract

To motivate people to use bikes for transportation, cities are shifting their focus from constructing isolated bike lanes to building interconnected bike networks. The effectiveness of these networks is measured by their level of connectivity, specifically how easily individuals of all ages and abilities can reach their destinations by bike. While most researchers and policymakers hypothesize that well-connected bike networks will reduce crash risk by offering bicyclists extended protection from traffic, most studies find positive or null associations between network connectivity and bike crashes. This discrepancy may arise either from actual processes, such as increased ridership in high-traffic areas, or from variability in how connectivity is measured. Our study aims to understand relationships between bike safety and various connectivity metrics at the neighborhood level by deconstructing and comparing different metrics. We critique previous constructs of density-based metrics rely solely on bike infrastructure and introduce new density-based and routing-based metrics derived from low-stress networks. Using a negative binomial regression model, we examine the association between bike crashes and connectivity metrics across 125 block groups in Santa Barbara and Goleta, California. We find that increased density-based connectivity in both bike infrastructure and low-stress networks correlates with fewer crashes. In contrast, routing-based connectivity measures, which reflect bike access to key destinations, are positively associated with crashes. We conclude that different connectivity metrics can alter the direction of connectivity-safety associations. Our proposed metrics, which incorporate low-stress networks and routing algorithms, provide a more nuanced understanding of how connectivity is related to bicycling safety.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
13.30
自引率
7.40%
发文量
111
审稿时长
32 days
期刊介绍: Computers, Environment and Urban Systemsis an interdisciplinary journal publishing cutting-edge and innovative computer-based research on environmental and urban systems, that privileges the geospatial perspective. The journal welcomes original high quality scholarship of a theoretical, applied or technological nature, and provides a stimulating presentation of perspectives, research developments, overviews of important new technologies and uses of major computational, information-based, and visualization innovations. Applied and theoretical contributions demonstrate the scope of computer-based analysis fostering a better understanding of environmental and urban systems, their spatial scope and their dynamics.
期刊最新文献
Mapping urban villages in China: Progress and challenges Quantify relationships between bike network connectivity and bike safety: A comparative analysis of connectivity metrics conducted in two California cities GeoAvatar: A big mobile phone positioning data-driven method for individualized pseudo personal mobility data generation Modelling active travel accessibility at the micro-scale using multi-source built environment data Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1