Xudong Sun , Yu Wang , Zhanglin Liu , Shaoxuan Gao , Wenbo He , Chao Tong
{"title":"SlimDL: Deploying ultra-light deep learning model on sweeping robots","authors":"Xudong Sun , Yu Wang , Zhanglin Liu , Shaoxuan Gao , Wenbo He , Chao Tong","doi":"10.1016/j.engappai.2025.110415","DOIUrl":null,"url":null,"abstract":"<div><div>Advanced object detection methods have yielded impressive progress in recent years. However, the computational constraints of edge mobile devices present significant deployment challenges for state-of-the-art algorithms. We propose a deep learning deployment framework with two stages: model adaptation and compression. Our method enhance “You Only Look Once version 5” (YOLOv5) with lightweight modules, which improves detection performance while reducing computational load. Additionally, we present a pruning algorithm, employing adaptive batch normalization and iterative pruning. Our evaluation on “Microsoft Common Objects in Context” (MSCOCO) dataset and custom SweepRobot datasets demonstrates that our method consistently outperforms state-of-the-art approaches. On the SweepRobot dataset, our method doubled YOLOv5’s detection speed on the sweeping robot from 15.69 frames per second (FPS) to 30.77 FPS, maintaining 97.3% performance at 20% of the computational cost. Even on Graphics Processing Unit equipped devices, our method achieved 1.8% and 2.8% higher Average Precision compared to direct scaling and pruning with the original pruning algorithm.</div></div>","PeriodicalId":50523,"journal":{"name":"Engineering Applications of Artificial Intelligence","volume":"149 ","pages":"Article 110415"},"PeriodicalIF":7.5000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Applications of Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0952197625004154","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Advanced object detection methods have yielded impressive progress in recent years. However, the computational constraints of edge mobile devices present significant deployment challenges for state-of-the-art algorithms. We propose a deep learning deployment framework with two stages: model adaptation and compression. Our method enhance “You Only Look Once version 5” (YOLOv5) with lightweight modules, which improves detection performance while reducing computational load. Additionally, we present a pruning algorithm, employing adaptive batch normalization and iterative pruning. Our evaluation on “Microsoft Common Objects in Context” (MSCOCO) dataset and custom SweepRobot datasets demonstrates that our method consistently outperforms state-of-the-art approaches. On the SweepRobot dataset, our method doubled YOLOv5’s detection speed on the sweeping robot from 15.69 frames per second (FPS) to 30.77 FPS, maintaining 97.3% performance at 20% of the computational cost. Even on Graphics Processing Unit equipped devices, our method achieved 1.8% and 2.8% higher Average Precision compared to direct scaling and pruning with the original pruning algorithm.
期刊介绍:
Artificial Intelligence (AI) is pivotal in driving the fourth industrial revolution, witnessing remarkable advancements across various machine learning methodologies. AI techniques have become indispensable tools for practicing engineers, enabling them to tackle previously insurmountable challenges. Engineering Applications of Artificial Intelligence serves as a global platform for the swift dissemination of research elucidating the practical application of AI methods across all engineering disciplines. Submitted papers are expected to present novel aspects of AI utilized in real-world engineering applications, validated using publicly available datasets to ensure the replicability of research outcomes. Join us in exploring the transformative potential of AI in engineering.