{"title":"Investigation and analysis of the proton-induced reactions on natCu, 65Cu, and 63Cu to produce 62, 63, 65Zn radioisotopes for medical applications","authors":"Bassam T. Al-Azraq , Noor Ali Hameed","doi":"10.1016/j.apradiso.2025.111765","DOIUrl":null,"url":null,"abstract":"<div><div>The phenomenological and microscopic level density models were utilized within the TALYS 2.0 software to simulate the cross-sections of proton-induced reactions on both natural and enriched copper. This process resulted in the production of the zinc radioisotopes <sup>62</sup>Zn, <sup>63</sup>Zn, and <sup>65</sup>Zn, which hold significance in diagnostic and therapeutic medicine. We assessed the uncertainty values for all computed cross sections by contrasting them with experimental data taken from the EXFOR database. This was undertaken to deliver a thorough and precise account of the predictions across various incident energy, grounded in the relevant uncertainty values associated with each energy value. We calculated the average uncertainty through the relative variance technique to identify the theoretical model that aligns most closely with the experimental data. The simulations demonstrated high accuracy when employing level density models, particularly the Skyrme-Hartree-Fock-Bogolyubov-Goriely's tables (SHFB) model, which exhibited excellent relative variance values for the majority of the reactions analyzed. Furthermore, specific energy values linked to significant uncertainty were recognized, indicating the necessity to steer clear of these energies in upcoming investigations aimed at producing <sup>62,63,65</sup>Zn radioisotopes. The theoretical yield was determined by utilizing the cross-section results derived from the most accurate model for each reaction, followed by a comparison with the experimental values. The majority of the chosen experimental yield values demonstrated strong consistency. The findings suggest that the yield for proton-induced reactions on enriched copper exceeded that of natural copper. Furthermore, the generation of zinc isotopes does not necessitate elevated incident energy, rendering these reactions particularly appropriate for application with small medical cyclotrons.</div></div>","PeriodicalId":8096,"journal":{"name":"Applied Radiation and Isotopes","volume":"220 ","pages":"Article 111765"},"PeriodicalIF":1.6000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Radiation and Isotopes","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0969804325001101","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
The phenomenological and microscopic level density models were utilized within the TALYS 2.0 software to simulate the cross-sections of proton-induced reactions on both natural and enriched copper. This process resulted in the production of the zinc radioisotopes 62Zn, 63Zn, and 65Zn, which hold significance in diagnostic and therapeutic medicine. We assessed the uncertainty values for all computed cross sections by contrasting them with experimental data taken from the EXFOR database. This was undertaken to deliver a thorough and precise account of the predictions across various incident energy, grounded in the relevant uncertainty values associated with each energy value. We calculated the average uncertainty through the relative variance technique to identify the theoretical model that aligns most closely with the experimental data. The simulations demonstrated high accuracy when employing level density models, particularly the Skyrme-Hartree-Fock-Bogolyubov-Goriely's tables (SHFB) model, which exhibited excellent relative variance values for the majority of the reactions analyzed. Furthermore, specific energy values linked to significant uncertainty were recognized, indicating the necessity to steer clear of these energies in upcoming investigations aimed at producing 62,63,65Zn radioisotopes. The theoretical yield was determined by utilizing the cross-section results derived from the most accurate model for each reaction, followed by a comparison with the experimental values. The majority of the chosen experimental yield values demonstrated strong consistency. The findings suggest that the yield for proton-induced reactions on enriched copper exceeded that of natural copper. Furthermore, the generation of zinc isotopes does not necessitate elevated incident energy, rendering these reactions particularly appropriate for application with small medical cyclotrons.
期刊介绍:
Applied Radiation and Isotopes provides a high quality medium for the publication of substantial, original and scientific and technological papers on the development and peaceful application of nuclear, radiation and radionuclide techniques in chemistry, physics, biochemistry, biology, medicine, security, engineering and in the earth, planetary and environmental sciences, all including dosimetry. Nuclear techniques are defined in the broadest sense and both experimental and theoretical papers are welcome. They include the development and use of α- and β-particles, X-rays and γ-rays, neutrons and other nuclear particles and radiations from all sources, including radionuclides, synchrotron sources, cyclotrons and reactors and from the natural environment.
The journal aims to publish papers with significance to an international audience, containing substantial novelty and scientific impact. The Editors reserve the rights to reject, with or without external review, papers that do not meet these criteria.
Papers dealing with radiation processing, i.e., where radiation is used to bring about a biological, chemical or physical change in a material, should be directed to our sister journal Radiation Physics and Chemistry.