Characteristics-based measurements of supersonic flows from schlieren images

IF 2.3 3区 工程技术 Q2 ENGINEERING, MECHANICAL Experiments in Fluids Pub Date : 2025-03-12 DOI:10.1007/s00348-025-03958-6
Alberto Guardone, Marta Zocca, Paolo Gajoni, Francesca Mondonico, Camilla Cecilia Conti
{"title":"Characteristics-based measurements of supersonic flows from schlieren images","authors":"Alberto Guardone,&nbsp;Marta Zocca,&nbsp;Paolo Gajoni,&nbsp;Francesca Mondonico,&nbsp;Camilla Cecilia Conti","doi":"10.1007/s00348-025-03958-6","DOIUrl":null,"url":null,"abstract":"<div><p>A novel method is presented to measure Mach number and flow angle from schlieren images of two-dimensional supersonic flows. A line detection technique is used to extract characteristic lines from schlieren images to measure the velocity direction and the Mach number at the intersection of characteristic curves. The proposed technique is independent of fluid thermodynamics and applies to dilute gas flows and non-ideal compressible flows. The velocity magnitude and fluid thermodynamics are retrieved from the fluid thermodynamic model, assuming constant total enthalpy and entropy. Mach number measurements are also obtained at solid walls by integrating the compatibility equation along the characteristic lines, using the measurements within the flowfield as initial conditions. Results are presented for two exemplary cases: an asymmetric converging–diverging nozzle and the supersonic flow around a diamond-shaped airfoil. Measured values of the Mach number and the flow angle agree with numerical predictions and indirect Mach number measurements based on pressure measurements. The reconstructed pressure and velocity magnitude values agree fairly well with available measurements and simulations in the dilute gas and in the non-ideal regimes.</p></div>","PeriodicalId":554,"journal":{"name":"Experiments in Fluids","volume":"66 4","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00348-025-03958-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experiments in Fluids","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00348-025-03958-6","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

A novel method is presented to measure Mach number and flow angle from schlieren images of two-dimensional supersonic flows. A line detection technique is used to extract characteristic lines from schlieren images to measure the velocity direction and the Mach number at the intersection of characteristic curves. The proposed technique is independent of fluid thermodynamics and applies to dilute gas flows and non-ideal compressible flows. The velocity magnitude and fluid thermodynamics are retrieved from the fluid thermodynamic model, assuming constant total enthalpy and entropy. Mach number measurements are also obtained at solid walls by integrating the compatibility equation along the characteristic lines, using the measurements within the flowfield as initial conditions. Results are presented for two exemplary cases: an asymmetric converging–diverging nozzle and the supersonic flow around a diamond-shaped airfoil. Measured values of the Mach number and the flow angle agree with numerical predictions and indirect Mach number measurements based on pressure measurements. The reconstructed pressure and velocity magnitude values agree fairly well with available measurements and simulations in the dilute gas and in the non-ideal regimes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Experiments in Fluids
Experiments in Fluids 工程技术-工程:机械
CiteScore
5.10
自引率
12.50%
发文量
157
审稿时长
3.8 months
期刊介绍: Experiments in Fluids examines the advancement, extension, and improvement of new techniques of flow measurement. The journal also publishes contributions that employ existing experimental techniques to gain an understanding of the underlying flow physics in the areas of turbulence, aerodynamics, hydrodynamics, convective heat transfer, combustion, turbomachinery, multi-phase flows, and chemical, biological and geological flows. In addition, readers will find papers that report on investigations combining experimental and analytical/numerical approaches.
期刊最新文献
Benchmark evaluation of event-based imaging velocimetry using digital micro-mirror device Asymmetric time sequence for multiple-exposure 3D PTV Characteristics-based measurements of supersonic flows from schlieren images Spatio-temporal characterization of the three-dimensional wave dynamics in falling film flows over rectangular corrugations Noise reduction measurement and biomimetic propeller optimization designs for unmanned underwater vehicles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1