Dr. Tulus Tulus, Dr. Vincent Morris Friebe, Andreas Peukert, Dr. Loreta A. Muscarella, Prof. Michael R. Jones, Dr. Raoul N. Frese, Prof. Elizabeth von Hauff
{"title":"Purple Bacteria Reaction Center Based Solid State Bio-Solar Cell With a Large Open Circuit Voltage","authors":"Dr. Tulus Tulus, Dr. Vincent Morris Friebe, Andreas Peukert, Dr. Loreta A. Muscarella, Prof. Michael R. Jones, Dr. Raoul N. Frese, Prof. Elizabeth von Hauff","doi":"10.1002/cptc.202400303","DOIUrl":null,"url":null,"abstract":"<p>A novel solid state bio-solar cell is demonstrated based on a purple bacterial reaction center-light harvesting 1 complex (RC-LH1) that exhibits high quantum efficiency and long carrier lifetimes. We demonstrate that careful choice of transport layers enables a high open circuit voltage of up to 0.3 V in these solid state biophotovoltaic devices. Electronic processes were investigated with impedance spectroscopy. Equivalent circuit modelling of impedance spectra obtained under illumination at DC offset voltages between open circuit and short circuit conditions revealed two relaxations on microsecond and millisecond time scales that are attributed to the charge transit time and carrier recombination processes, respectively. The operational stability of the solar cells was examined under constant illumination for over 3 hours and a burn-in time of several minutes was observed, after which operational parameters stabilized. This work is the largest voltage reported for RC-LH1 based solid state biophotovoltaic devices to date.</p>","PeriodicalId":10108,"journal":{"name":"ChemPhotoChem","volume":"9 3","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemPhotoChem","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cptc.202400303","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
A novel solid state bio-solar cell is demonstrated based on a purple bacterial reaction center-light harvesting 1 complex (RC-LH1) that exhibits high quantum efficiency and long carrier lifetimes. We demonstrate that careful choice of transport layers enables a high open circuit voltage of up to 0.3 V in these solid state biophotovoltaic devices. Electronic processes were investigated with impedance spectroscopy. Equivalent circuit modelling of impedance spectra obtained under illumination at DC offset voltages between open circuit and short circuit conditions revealed two relaxations on microsecond and millisecond time scales that are attributed to the charge transit time and carrier recombination processes, respectively. The operational stability of the solar cells was examined under constant illumination for over 3 hours and a burn-in time of several minutes was observed, after which operational parameters stabilized. This work is the largest voltage reported for RC-LH1 based solid state biophotovoltaic devices to date.
ChemPhotoChemChemistry-Physical and Theoretical Chemistry
CiteScore
5.80
自引率
5.40%
发文量
165
期刊介绍:
Light plays a crucial role in natural processes and leads to exciting phenomena in molecules and materials. ChemPhotoChem welcomes exceptional international research in the entire scope of pure and applied photochemistry, photobiology, and photophysics. Our thorough editorial practices aid us in publishing authoritative research fast. We support the photochemistry community to be a leading light in science.
We understand the huge pressures the scientific community is facing every day and we want to support you. Chemistry Europe is an association of 16 chemical societies from 15 European countries. Run by chemists, for chemists—we evaluate, publish, disseminate, and amplify the scientific excellence of chemistry researchers from around the globe.