Polarization Switching of Photocatalytic Solar-to-Hydrogen Conversion in Two-Dimensional Single-Layer Lattices: Insights from First-Principles and Non-adiabatic Molecular Dynamics.

IF 4.8 2区 化学 Q2 CHEMISTRY, PHYSICAL The Journal of Physical Chemistry Letters Pub Date : 2025-03-20 Epub Date: 2025-03-10 DOI:10.1021/acs.jpclett.5c00028
Yu-Liang Liu, Yi-Dong Zhu, Run-Yang Xin, Wen-Kai Zhao, Xing-Shuai Lv, Feng Gao, Chuan-Lu Yang
{"title":"Polarization Switching of Photocatalytic Solar-to-Hydrogen Conversion in Two-Dimensional Single-Layer Lattices: Insights from First-Principles and Non-adiabatic Molecular Dynamics.","authors":"Yu-Liang Liu, Yi-Dong Zhu, Run-Yang Xin, Wen-Kai Zhao, Xing-Shuai Lv, Feng Gao, Chuan-Lu Yang","doi":"10.1021/acs.jpclett.5c00028","DOIUrl":null,"url":null,"abstract":"<p><p>Two-dimensional polar materials with adjustable polarization hold significant potential to improve photocatalytic water-splitting performance. However, due to the distinct mechanism for regulating polarization and photocatalysis, achieving efficient polarization modulation for enhanced photocatalytic efficiency remains challenging. Herein, using first-principles calculations with non-adiabatic molecular dynamics simulations, we identify four single-layer materials of MoXX'N<sub>3</sub>Y (X and X' = Si and Ge; X ≠ X'; and Y = P and As), whose catalytic activity can be well-tuned by polarization switching. Adjusting electronic asymmetry contributes to effective control of electric polarization, ultimately affecting catalytic reaction paths and carrier dynamics. Consequently, P↑ MoGeSiN<sub>3</sub>Y allows spontaneous redox reactions for overall water splitting, unlike P↓ MoSiGeN<sub>3</sub>Y. Besides, the polarization switching in MoXX'N<sub>3</sub>Y monolayers enhances solar-to-hydrogen conversion efficiency and prolongs carrier lifetimes, thereby achieving a polarization-dependent photocatalytic switch. This study opens an avenue to modify the polarization and significantly improve the catalytic efficiency.</p>","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":" ","pages":"2837-2844"},"PeriodicalIF":4.8000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpclett.5c00028","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/10 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Two-dimensional polar materials with adjustable polarization hold significant potential to improve photocatalytic water-splitting performance. However, due to the distinct mechanism for regulating polarization and photocatalysis, achieving efficient polarization modulation for enhanced photocatalytic efficiency remains challenging. Herein, using first-principles calculations with non-adiabatic molecular dynamics simulations, we identify four single-layer materials of MoXX'N3Y (X and X' = Si and Ge; X ≠ X'; and Y = P and As), whose catalytic activity can be well-tuned by polarization switching. Adjusting electronic asymmetry contributes to effective control of electric polarization, ultimately affecting catalytic reaction paths and carrier dynamics. Consequently, P↑ MoGeSiN3Y allows spontaneous redox reactions for overall water splitting, unlike P↓ MoSiGeN3Y. Besides, the polarization switching in MoXX'N3Y monolayers enhances solar-to-hydrogen conversion efficiency and prolongs carrier lifetimes, thereby achieving a polarization-dependent photocatalytic switch. This study opens an avenue to modify the polarization and significantly improve the catalytic efficiency.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
The Journal of Physical Chemistry Letters
The Journal of Physical Chemistry Letters CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
9.60
自引率
7.00%
发文量
1519
审稿时长
1.6 months
期刊介绍: The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.
期刊最新文献
Reversible Hiding of Janus Structural Color Pattern Induced by ZnS Colloidal Spheres on Inverse-Opal Structure Predicting Thermodynamic Stability at Protein G Sites with Deleterious Mutations Using λ-Dynamics with Competitive Screening Manipulating the Interface Relay Jumps of OH–ad Species to Accelerate the Anode Reaction Kinetics in Direct Ammonia Fuel Cells A Reflection on the Use of Molecular Simulation to Respond to SARS-CoV-2 Pandemic Threats 2D Electronic Spectroscopy Uncovers 2D Materials: Theoretical Study of Nanocavity-Integrated Monolayer Semiconductors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1