{"title":"Design of Multimodal Supramolecular Protein Assemblies via Enzyme-Substrate Interactions for Intracellular Antioxidant Regulation.","authors":"Xiaoxuan Yu, Hui Li, Jiarun Wu, Yaqi Wu, Cong Li, Yujun Li, Zhengwei Xu, Jiayun Xu, Zhenhui Qi, Chunxi Hou, Tingting Wang, Yan Ge, Junqiu Liu","doi":"10.1021/acs.nanolett.5c00296","DOIUrl":null,"url":null,"abstract":"<p><p>Allosteric modulation of protein function, which involves effector binding triggering distant conformational changes, is crucial for cellular and metabolic control. However, achieving tunable control, structural diversity, and precise intracellular regulation remains challenging. Here, we designed dynamic supramolecular protein assemblies driven by enzyme-substrate interactions for antioxidant regulation in cells. Using a glutathione S-transferase modified with a cysteine mutation (GSTK77C), we engineered an effector molecule (GMP4M) containing a glutathione (GSH) moiety and maleimide group linked by a PEG chain. This system forms hierarchical protein assemblies with diverse morphologies, including nanowires, nanorings, nanobranches, and nanotwists, and switchable \"ON/OFF\" enzymatic activity modulated by endogenous GSH. The assemblies maintain structural integrity under physiological conditions, show remarkable reversibility, and outperform native GST in stability and environmental adaptability. This approach provides a versatile platform for creating tunable and diverse protein assemblies with broad applications in antioxidant therapies and biomedical interventions.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":" ","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.5c00296","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Allosteric modulation of protein function, which involves effector binding triggering distant conformational changes, is crucial for cellular and metabolic control. However, achieving tunable control, structural diversity, and precise intracellular regulation remains challenging. Here, we designed dynamic supramolecular protein assemblies driven by enzyme-substrate interactions for antioxidant regulation in cells. Using a glutathione S-transferase modified with a cysteine mutation (GSTK77C), we engineered an effector molecule (GMP4M) containing a glutathione (GSH) moiety and maleimide group linked by a PEG chain. This system forms hierarchical protein assemblies with diverse morphologies, including nanowires, nanorings, nanobranches, and nanotwists, and switchable "ON/OFF" enzymatic activity modulated by endogenous GSH. The assemblies maintain structural integrity under physiological conditions, show remarkable reversibility, and outperform native GST in stability and environmental adaptability. This approach provides a versatile platform for creating tunable and diverse protein assemblies with broad applications in antioxidant therapies and biomedical interventions.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.