Sabrina Kubinski, Luisa Claus, Tobias Schüning, Andre Zeug, Norman Kalmbach, Selma Staege, Thomas Gschwendtberger, Susanne Petri, Florian Wegner, Peter Claus, Niko Hensel
{"title":"Aggregates associated with amyotrophic lateral sclerosis sequester the actin-binding protein profilin 2.","authors":"Sabrina Kubinski, Luisa Claus, Tobias Schüning, Andre Zeug, Norman Kalmbach, Selma Staege, Thomas Gschwendtberger, Susanne Petri, Florian Wegner, Peter Claus, Niko Hensel","doi":"10.1093/hmg/ddaf020","DOIUrl":null,"url":null,"abstract":"<p><p>Amyotrophic Lateral Sclerosis (ALS) is a devastating neurodegenerative disease characterized by the degeneration of upper and lower motoneurons. The four most frequently mutated genes causing familial ALS (fALS) are C9orf72, FUS, SOD1, and TARDBP. Some of the related wild-type proteins comprise intrinsically disordered regions (IDRs) which favor their assembly in liquid droplets-the biophysical mechanism behind the formation of physiological granules such as stress granules (SGs). SGs assemble and dissolve dependent on the cellular condition. However, it has been suggested that transition from reversible SGs to irreversible aggregates contributes to the toxic properties of ALS-related mutated proteins. Sequestration of additional proteins within these aggregates may then result in downstream toxicity. While the exact downstream mechanisms remain elusive, rare ALS-causing mutations in the actin binding protein profilin 1 suggest an involvement of the actin cytoskeleton. Here, we hypothesize that profilin isoforms become sequestered in aggregates of ALS-associated proteins which induce subsequent dysregulation of the actin cytoskeleton. Interestingly, localization of neuronal profilin 2 in SGs was more pronounced compared with the ubiquitously expressed profilin 1. Accordingly, FUS and C9orf72 aggregates prominently sequestered profilin 2 but not profilin 1. Moreover, we observed a distinct sequestration of profilin 2 and G-actin to C9orf72 aggregates in different cellular models. On the functional level, we identified dysregulated actin dynamics in cells with profilin 2-sequestering aggregates. In summary, our results suggest a more common involvement of profilins in ALS pathomechanisms than indicated from the rarely occurring profilin mutations.</p>","PeriodicalId":13070,"journal":{"name":"Human molecular genetics","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human molecular genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/hmg/ddaf020","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a devastating neurodegenerative disease characterized by the degeneration of upper and lower motoneurons. The four most frequently mutated genes causing familial ALS (fALS) are C9orf72, FUS, SOD1, and TARDBP. Some of the related wild-type proteins comprise intrinsically disordered regions (IDRs) which favor their assembly in liquid droplets-the biophysical mechanism behind the formation of physiological granules such as stress granules (SGs). SGs assemble and dissolve dependent on the cellular condition. However, it has been suggested that transition from reversible SGs to irreversible aggregates contributes to the toxic properties of ALS-related mutated proteins. Sequestration of additional proteins within these aggregates may then result in downstream toxicity. While the exact downstream mechanisms remain elusive, rare ALS-causing mutations in the actin binding protein profilin 1 suggest an involvement of the actin cytoskeleton. Here, we hypothesize that profilin isoforms become sequestered in aggregates of ALS-associated proteins which induce subsequent dysregulation of the actin cytoskeleton. Interestingly, localization of neuronal profilin 2 in SGs was more pronounced compared with the ubiquitously expressed profilin 1. Accordingly, FUS and C9orf72 aggregates prominently sequestered profilin 2 but not profilin 1. Moreover, we observed a distinct sequestration of profilin 2 and G-actin to C9orf72 aggregates in different cellular models. On the functional level, we identified dysregulated actin dynamics in cells with profilin 2-sequestering aggregates. In summary, our results suggest a more common involvement of profilins in ALS pathomechanisms than indicated from the rarely occurring profilin mutations.
期刊介绍:
Human Molecular Genetics concentrates on full-length research papers covering a wide range of topics in all aspects of human molecular genetics. These include:
the molecular basis of human genetic disease
developmental genetics
cancer genetics
neurogenetics
chromosome and genome structure and function
therapy of genetic disease
stem cells in human genetic disease and therapy, including the application of iPS cells
genome-wide association studies
mouse and other models of human diseases
functional genomics
computational genomics
In addition, the journal also publishes research on other model systems for the analysis of genes, especially when there is an obvious relevance to human genetics.