The HOX code of human adult fibroblasts reflects their ectomesenchymal or mesodermal origin.

IF 2.1 4区 生物学 Q4 CELL BIOLOGY Histochemistry and Cell Biology Pub Date : 2025-03-10 DOI:10.1007/s00418-025-02362-9
Lucie Pfeiferová, Michal Španko, Jana Šáchová, Miluše Hradilová, Kenneth J Pienta, Jaroslav Valach, Vladimír Machoň, Barbora Výmolová, Aleksi Šedo, Petr Bušek, Pavol Szabo, Lukáš Lacina, Peter Gál, Michal Kolář, Karel Smetana
{"title":"The HOX code of human adult fibroblasts reflects their ectomesenchymal or mesodermal origin.","authors":"Lucie Pfeiferová, Michal Španko, Jana Šáchová, Miluše Hradilová, Kenneth J Pienta, Jaroslav Valach, Vladimír Machoň, Barbora Výmolová, Aleksi Šedo, Petr Bušek, Pavol Szabo, Lukáš Lacina, Peter Gál, Michal Kolář, Karel Smetana","doi":"10.1007/s00418-025-02362-9","DOIUrl":null,"url":null,"abstract":"<p><p>Fibroblasts, the most abundant cell type in the human body, play crucial roles in biological processes such as inflammation and cancer progression. They originate from the mesoderm or neural-crest-derived ectomesenchyme. Ectomesenchyme-derived fibroblasts contribute to facial formation and do not express HOX genes during development. The expression and role of the HOX genes in adult fibroblasts is not known. We investigated whether the developmental pattern persists into adulthood and under pathological conditions, such as cancer. We collected adult fibroblasts of ectomesenchymal and mesodermal origins from distinct body parts. The isolated fibroblasts were characterised by immunocytochemistry, and their transcriptome was analysed by whole genome profiling. Significant differences were observed between normal fibroblasts from the face (ectomesenchyme) and upper limb (mesoderm), particularly in genes associated with limb development, including HOX genes, e.g., HOXA9 and HOXD9. Notably, the pattern of HOX gene expression remained consistent postnatally, even in fibroblasts from pathological tissues, including inflammatory states and cancer-associated fibroblasts from primary and metastatic tumours. Therefore, the distinctive HOX gene expression pattern can serve as an indicator of the topological origin of fibroblasts. The influence of cell position and HOX gene expression in fibroblasts on disease progression warrants further investigation.</p>","PeriodicalId":13107,"journal":{"name":"Histochemistry and Cell Biology","volume":"163 1","pages":"38"},"PeriodicalIF":2.1000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11893657/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Histochemistry and Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00418-025-02362-9","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Fibroblasts, the most abundant cell type in the human body, play crucial roles in biological processes such as inflammation and cancer progression. They originate from the mesoderm or neural-crest-derived ectomesenchyme. Ectomesenchyme-derived fibroblasts contribute to facial formation and do not express HOX genes during development. The expression and role of the HOX genes in adult fibroblasts is not known. We investigated whether the developmental pattern persists into adulthood and under pathological conditions, such as cancer. We collected adult fibroblasts of ectomesenchymal and mesodermal origins from distinct body parts. The isolated fibroblasts were characterised by immunocytochemistry, and their transcriptome was analysed by whole genome profiling. Significant differences were observed between normal fibroblasts from the face (ectomesenchyme) and upper limb (mesoderm), particularly in genes associated with limb development, including HOX genes, e.g., HOXA9 and HOXD9. Notably, the pattern of HOX gene expression remained consistent postnatally, even in fibroblasts from pathological tissues, including inflammatory states and cancer-associated fibroblasts from primary and metastatic tumours. Therefore, the distinctive HOX gene expression pattern can serve as an indicator of the topological origin of fibroblasts. The influence of cell position and HOX gene expression in fibroblasts on disease progression warrants further investigation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Histochemistry and Cell Biology
Histochemistry and Cell Biology 生物-细胞生物学
CiteScore
4.90
自引率
8.70%
发文量
112
审稿时长
1 months
期刊介绍: Histochemistry and Cell Biology is devoted to the field of molecular histology and cell biology, publishing original articles dealing with the localization and identification of molecular components, metabolic activities and cell biological aspects of cells and tissues. Coverage extends to the development, application, and/or evaluation of methods and probes that can be used in the entire area of histochemistry and cell biology.
期刊最新文献
The HOX code of human adult fibroblasts reflects their ectomesenchymal or mesodermal origin. Wound healing and anti-inflammatory effects of LAA, the N-acetyl-D-galactosamine-binding lectin from seeds of Luetzelburgia auriculata (Allemão) ducke. Novel method of paraffin embedding cultured cells and organoids using silicone molds. January In focus in HCB. Replicative senescence in amniotic fluid-derived mesenchymal stem cells and its impact on their immunomodulatory properties.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1