General SIR model for visible and hidden epidemic dynamics.

IF 3 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Frontiers in Artificial Intelligence Pub Date : 2025-02-24 eCollection Date: 2025-01-01 DOI:10.3389/frai.2025.1559880
Igor Nesteruk
{"title":"General SIR model for visible and hidden epidemic dynamics.","authors":"Igor Nesteruk","doi":"10.3389/frai.2025.1559880","DOIUrl":null,"url":null,"abstract":"<p><p>To simulate hidden epidemic dynamics connected with asymptomatic and unregistered patients, a new general SIR model was proposed. For some cases, the analytical solutions of the set of 5 differential equations were found, which allow simplifying the parameter identification procedure. Two waves of the pertussis epidemic in England in 2023 and 2024 were simulated with the assumption of zero hidden cases. The accumulated and daily numbers of cases and the duration of the second wave were predicted with rather high accuracy. If the trend will not change, the monthly figure of 9 new pertussis cases (as it was in January-February 2023) can be achieved only in May 2025. The proposed approach can be recommended for both simulations and predictions of different epidemics.</p>","PeriodicalId":33315,"journal":{"name":"Frontiers in Artificial Intelligence","volume":"8 ","pages":"1559880"},"PeriodicalIF":3.0000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11891346/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frai.2025.1559880","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

To simulate hidden epidemic dynamics connected with asymptomatic and unregistered patients, a new general SIR model was proposed. For some cases, the analytical solutions of the set of 5 differential equations were found, which allow simplifying the parameter identification procedure. Two waves of the pertussis epidemic in England in 2023 and 2024 were simulated with the assumption of zero hidden cases. The accumulated and daily numbers of cases and the duration of the second wave were predicted with rather high accuracy. If the trend will not change, the monthly figure of 9 new pertussis cases (as it was in January-February 2023) can be achieved only in May 2025. The proposed approach can be recommended for both simulations and predictions of different epidemics.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.10
自引率
2.50%
发文量
272
审稿时长
13 weeks
期刊最新文献
Comparison of 3D and 2D area measurement of acute burn wounds with LiDAR technique and deep learning model. Advancements in cache management: a review of machine learning innovations for enhanced performance and security. Transfer learning-based hybrid VGG16-machine learning approach for heart disease detection with explainable artificial intelligence. AI, universal basic income, and power: symbolic violence in the tech elite's narrative. General SIR model for visible and hidden epidemic dynamics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1