Unlocking germination: the role of mycorrhizal strain and seed provenance in driving seed germination of a widespread terrestrial orchid.

IF 3.3 2区 生物学 Q2 MYCOLOGY Mycorrhiza Pub Date : 2025-03-10 DOI:10.1007/s00572-025-01184-w
Zeyu Zhao, Luna Yang, Yaoyao Wang, Xin Qian, Gang Ding, Hans Jacquemyn, Xiaoke Xing
{"title":"Unlocking germination: the role of mycorrhizal strain and seed provenance in driving seed germination of a widespread terrestrial orchid.","authors":"Zeyu Zhao, Luna Yang, Yaoyao Wang, Xin Qian, Gang Ding, Hans Jacquemyn, Xiaoke Xing","doi":"10.1007/s00572-025-01184-w","DOIUrl":null,"url":null,"abstract":"<p><p>Orchids represent an important component of biodiversity in many ecosystems worldwide, notwithstanding their seed germination and distribution may to a large extent be determined and influenced by mycorrhizal fungi. While it is commonly assumed that widespread orchids are mycorrhizal generalists, the degree to which mycorrhizal diversity supports seed germination remains relatively underexplored. In this study, we investigated the role of a variety of Ceratobasidium fungi in supporting seed germination of the widespread terrestrial orchid Gymnadenia conopsea across China. Twelve Ceratobasidium strains isolated from G. conopsea and other orchids were examined for their ability to support germination of G. conopsea seeds collected from twelve sites across China. Of the twelve tested strains, six were able to support seed germination, while the remaining six strains showed no activity. Compatible strains showed a broad phylogenetic breadth, indicating the G. conopsea is capable of initiating associations with a diverse array of Ceratobasidium fungi. However, the six compatible strains differed in their ability to support protocorm formation. Moreover, germination success of seeds collected from different sites differed among Ceratobasidium strains. Seeds from northern China had a significantly higher number of compatible strains (average 5.6) than seeds from southwestern China (average 3.5). Our results suggest that G. conopsea is not only a mycorrhizal generalist in the adult stage but also in the seed germination stage, at least towards Ceratobasidium fungi. However, the significant strain-provenance interactions indicate regional differences in orchid-fungus interactions. These findings are important for improving local population restoration programs and germplasm conservation of this widespread and endangered orchid species.</p>","PeriodicalId":18965,"journal":{"name":"Mycorrhiza","volume":"35 2","pages":"18"},"PeriodicalIF":3.3000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mycorrhiza","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00572-025-01184-w","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MYCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Orchids represent an important component of biodiversity in many ecosystems worldwide, notwithstanding their seed germination and distribution may to a large extent be determined and influenced by mycorrhizal fungi. While it is commonly assumed that widespread orchids are mycorrhizal generalists, the degree to which mycorrhizal diversity supports seed germination remains relatively underexplored. In this study, we investigated the role of a variety of Ceratobasidium fungi in supporting seed germination of the widespread terrestrial orchid Gymnadenia conopsea across China. Twelve Ceratobasidium strains isolated from G. conopsea and other orchids were examined for their ability to support germination of G. conopsea seeds collected from twelve sites across China. Of the twelve tested strains, six were able to support seed germination, while the remaining six strains showed no activity. Compatible strains showed a broad phylogenetic breadth, indicating the G. conopsea is capable of initiating associations with a diverse array of Ceratobasidium fungi. However, the six compatible strains differed in their ability to support protocorm formation. Moreover, germination success of seeds collected from different sites differed among Ceratobasidium strains. Seeds from northern China had a significantly higher number of compatible strains (average 5.6) than seeds from southwestern China (average 3.5). Our results suggest that G. conopsea is not only a mycorrhizal generalist in the adult stage but also in the seed germination stage, at least towards Ceratobasidium fungi. However, the significant strain-provenance interactions indicate regional differences in orchid-fungus interactions. These findings are important for improving local population restoration programs and germplasm conservation of this widespread and endangered orchid species.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Mycorrhiza
Mycorrhiza 生物-真菌学
CiteScore
8.20
自引率
2.60%
发文量
40
审稿时长
6-12 weeks
期刊介绍: Mycorrhiza is an international journal devoted to research into mycorrhizas - the widest symbioses in nature, involving plants and a range of soil fungi world-wide. The scope of Mycorrhiza covers all aspects of research into mycorrhizas, including molecular biology of the plants and fungi, fungal systematics, development and structure of mycorrhizas, and effects on plant physiology, productivity, reproduction and disease resistance. The scope also includes interactions between mycorrhizal fungi and other soil organisms and effects of mycorrhizas on plant biodiversity and ecosystem structure. Mycorrhiza contains original papers, short notes and review articles, along with commentaries and news items. It forms a platform for new concepts and discussions, and is a basis for a truly international forum of mycorrhizologists from all over the world.
期刊最新文献
Morphological spore-based characterisation and molecular approaches reveal comparable patterns in glomeromycotan communities. Unlocking germination: the role of mycorrhizal strain and seed provenance in driving seed germination of a widespread terrestrial orchid. Arbuscular mycorrhizal fungi strongly influence the endorhizosphere of grapevine rootstock with soil type as a key factor. Synonymization of three species of Rhizophagus based on morphological and molecular evidence and biogeography of Rhizophagus clarus. The synergistic effect of Rhizophagus irregularis and Biochar on the growth of Switchgrass under sodium-saline-alkali stress: insights from soil mechanical property analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1