Implications for soluble iron accumulation, oxidative stress, and glial glutamate release in motor neuron death associated with sporadic amyotrophic lateral sclerosis.

IF 1.3 4区 医学 Q4 CLINICAL NEUROLOGY Neuropathology Pub Date : 2025-03-10 DOI:10.1111/neup.13033
Noriyuki Shibata, Ikuko Kataoka, Yukinori Okamura, Kumiko Murakami, Yoichiro Kato, Tomoko Yamamoto, Kenta Masui
{"title":"Implications for soluble iron accumulation, oxidative stress, and glial glutamate release in motor neuron death associated with sporadic amyotrophic lateral sclerosis.","authors":"Noriyuki Shibata, Ikuko Kataoka, Yukinori Okamura, Kumiko Murakami, Yoichiro Kato, Tomoko Yamamoto, Kenta Masui","doi":"10.1111/neup.13033","DOIUrl":null,"url":null,"abstract":"<p><p>Oxidative stress in sporadic amyotrophic lateral sclerosis (ALS) has been evidenced by accumulation of oxidatively modified products of nucleic acids, lipids, sugars, and proteins in the motor neuron system of brains and spinal cords obtained at autopsy from the patients. We recently demonstrated soluble iron accumulation in activated microglia of sporadic ALS spinal cords. This finding could indicate that iron-mediated Fenton reaction is most likely to be responsible for oxidative stress associated with this disease. The excitatory amino acid neurotoxicity hypothesis for sporadic ALS has been proposed based on increased glutamate and aspartate concentrations in cerebrospinal fluid from the patients. Initially, the increase in extracellular excitatory amino acid levels was considered to reflect excessive release from the axon terminal of upper motor neurons. However, it is a question of whether the damaged upper motor neurons continue releasing glutamate even in advanced stage of this disease. To address this issue, we hypothesized that glial cells might be a glutamate release source. Our immunohistochemical analysis on autopsied human spinal cords revealed that ferritin, hepcidin, ferroportin, aconitase 1, tumor necrosis factor-α (TNF-α), TNF-α-converting enzyme (TACE), and glutaminase-C (GAC) were expressed mainly in microglia and that cystine/glutamate antiporter (xCT) was expressed mainly in astrocytes. We next performed cell culture experiments. Cultured microglia treated with soluble iron over-released glutamate and TNF-α via aconitase 1 and TACE, respectively. Cultured microglia treated with TNF-α over-released glutamate via GAC. Cultured microglia treated with hepcidin, of which expression is known to be upregulated by TNF-α, showed downregulated expression of ferroportin. Cultured astrocytes treated with hydrogen peroxide over-released glutamate via xCT. These observations provide in vivo and in vitro evidence that microglia and astrocytes are glutamate suppliers in response to soluble iron overload and oxidative stress, respectively, in sporadic ALS.</p>","PeriodicalId":19204,"journal":{"name":"Neuropathology","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuropathology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/neup.13033","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Oxidative stress in sporadic amyotrophic lateral sclerosis (ALS) has been evidenced by accumulation of oxidatively modified products of nucleic acids, lipids, sugars, and proteins in the motor neuron system of brains and spinal cords obtained at autopsy from the patients. We recently demonstrated soluble iron accumulation in activated microglia of sporadic ALS spinal cords. This finding could indicate that iron-mediated Fenton reaction is most likely to be responsible for oxidative stress associated with this disease. The excitatory amino acid neurotoxicity hypothesis for sporadic ALS has been proposed based on increased glutamate and aspartate concentrations in cerebrospinal fluid from the patients. Initially, the increase in extracellular excitatory amino acid levels was considered to reflect excessive release from the axon terminal of upper motor neurons. However, it is a question of whether the damaged upper motor neurons continue releasing glutamate even in advanced stage of this disease. To address this issue, we hypothesized that glial cells might be a glutamate release source. Our immunohistochemical analysis on autopsied human spinal cords revealed that ferritin, hepcidin, ferroportin, aconitase 1, tumor necrosis factor-α (TNF-α), TNF-α-converting enzyme (TACE), and glutaminase-C (GAC) were expressed mainly in microglia and that cystine/glutamate antiporter (xCT) was expressed mainly in astrocytes. We next performed cell culture experiments. Cultured microglia treated with soluble iron over-released glutamate and TNF-α via aconitase 1 and TACE, respectively. Cultured microglia treated with TNF-α over-released glutamate via GAC. Cultured microglia treated with hepcidin, of which expression is known to be upregulated by TNF-α, showed downregulated expression of ferroportin. Cultured astrocytes treated with hydrogen peroxide over-released glutamate via xCT. These observations provide in vivo and in vitro evidence that microglia and astrocytes are glutamate suppliers in response to soluble iron overload and oxidative stress, respectively, in sporadic ALS.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Neuropathology
Neuropathology 医学-病理学
CiteScore
4.10
自引率
4.30%
发文量
105
审稿时长
6-12 weeks
期刊介绍: Neuropathology is an international journal sponsored by the Japanese Society of Neuropathology and publishes peer-reviewed original papers dealing with all aspects of human and experimental neuropathology and related fields of research. The Journal aims to promote the international exchange of results and encourages authors from all countries to submit papers in the following categories: Original Articles, Case Reports, Short Communications, Occasional Reviews, Editorials and Letters to the Editor. All articles are peer-reviewed by at least two researchers expert in the field of the submitted paper.
期刊最新文献
Unprecedented Combination of Rare Degenerative Pathologies in an Octogenarian Ex-Football Player. Implications for soluble iron accumulation, oxidative stress, and glial glutamate release in motor neuron death associated with sporadic amyotrophic lateral sclerosis. Assessing Co-Localization of ITM2B With Alzheimer's Disease and Limbic-Predominant Age-Related TDP-43 Encephalopathy Neuropathologic Changes. OTX-2 Expression as a Diagnostic Marker for Choroid Plexus Tumors. Multiple Neuropathologies Underly Hippocampal Subfield Atrophy in a Case With a Slowly Progressive Amnestic Syndrome: Challenging the Notion of Pure LATE-NC.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1