Amr Elkelish, Ahmad M Alqudah, Abdulrahman M Alhudhaibi, Hussain Alqahtani, Andreas Börner, Samar G Thabet
{"title":"Inherited endurance: deciphering genetic associations of transgenerational and intergenerational heat stress memory in barley.","authors":"Amr Elkelish, Ahmad M Alqudah, Abdulrahman M Alhudhaibi, Hussain Alqahtani, Andreas Börner, Samar G Thabet","doi":"10.1007/s11103-025-01571-z","DOIUrl":null,"url":null,"abstract":"<p><p>Barley (Hordeum vulgare L.), a cornerstone of global cereal crops, is increasingly vulnerable to concurrent heat stress, a critical abiotic factor that is intensified by climate change. This study employed genome-wide association studies (GWAS) to investigate \"stress memory,\" a phenomenon where prior stress exposure enhances a plant's response to subsequent stress events. In this study, we analyzed essential agronomic traits, including plant height, spike length, grain number, and thousand-kernel weight, in conjunction with biochemical markers such as chlorophyll content, proline, and soluble proteins. These assessments spanned three successive generations under heat stress, capturing transgenerational and intergenerational effects and uncovering the cumulative impacts of prolonged stress in the third generation. Markedly, our findings highlight the critical influence of heat stress on plant physiology across generational scales, showcasing significant reductions in chlorophyll content, which reflect stress-induced limitations on photosynthetic capacity. In contrast, the observed consistent and substantial increases in proline and soluble protein content across transgenerational, intergenerational, and third-generation stress memory stages underscore their vital roles in stress mitigation and cellular homeostasis. These results provide compelling evidence of generational stress memory, suggesting potential adaptive strategies that plants employ to cope with harsh environmental conditions. Interestingly, identifying significant SNP markers within key genomic regions using GWAS analysis further highlights the potential for harnessing these loci in breeding programs. These results shed light on the intricate mechanisms of barley's stress tolerance and underscore the potential of integrating genomic, epigenomic, and advanced phenotyping tools into breeding programs to develop heat-resilient cultivars.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":"115 2","pages":"42"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11103-025-01571-z","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Barley (Hordeum vulgare L.), a cornerstone of global cereal crops, is increasingly vulnerable to concurrent heat stress, a critical abiotic factor that is intensified by climate change. This study employed genome-wide association studies (GWAS) to investigate "stress memory," a phenomenon where prior stress exposure enhances a plant's response to subsequent stress events. In this study, we analyzed essential agronomic traits, including plant height, spike length, grain number, and thousand-kernel weight, in conjunction with biochemical markers such as chlorophyll content, proline, and soluble proteins. These assessments spanned three successive generations under heat stress, capturing transgenerational and intergenerational effects and uncovering the cumulative impacts of prolonged stress in the third generation. Markedly, our findings highlight the critical influence of heat stress on plant physiology across generational scales, showcasing significant reductions in chlorophyll content, which reflect stress-induced limitations on photosynthetic capacity. In contrast, the observed consistent and substantial increases in proline and soluble protein content across transgenerational, intergenerational, and third-generation stress memory stages underscore their vital roles in stress mitigation and cellular homeostasis. These results provide compelling evidence of generational stress memory, suggesting potential adaptive strategies that plants employ to cope with harsh environmental conditions. Interestingly, identifying significant SNP markers within key genomic regions using GWAS analysis further highlights the potential for harnessing these loci in breeding programs. These results shed light on the intricate mechanisms of barley's stress tolerance and underscore the potential of integrating genomic, epigenomic, and advanced phenotyping tools into breeding programs to develop heat-resilient cultivars.
期刊介绍:
Plant Molecular Biology is an international journal dedicated to rapid publication of original research articles in all areas of plant biology.The Editorial Board welcomes full-length manuscripts that address important biological problems of broad interest, including research in comparative genomics, functional genomics, proteomics, bioinformatics, computational biology, biochemical and regulatory networks, and biotechnology. Because space in the journal is limited, however, preference is given to publication of results that provide significant new insights into biological problems and that advance the understanding of structure, function, mechanisms, or regulation. Authors must ensure that results are of high quality and that manuscripts are written for a broad plant science audience.