Inherited endurance: deciphering genetic associations of transgenerational and intergenerational heat stress memory in barley.

IF 3.9 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Plant Molecular Biology Pub Date : 2025-03-10 DOI:10.1007/s11103-025-01571-z
Amr Elkelish, Ahmad M Alqudah, Abdulrahman M Alhudhaibi, Hussain Alqahtani, Andreas Börner, Samar G Thabet
{"title":"Inherited endurance: deciphering genetic associations of transgenerational and intergenerational heat stress memory in barley.","authors":"Amr Elkelish, Ahmad M Alqudah, Abdulrahman M Alhudhaibi, Hussain Alqahtani, Andreas Börner, Samar G Thabet","doi":"10.1007/s11103-025-01571-z","DOIUrl":null,"url":null,"abstract":"<p><p>Barley (Hordeum vulgare L.), a cornerstone of global cereal crops, is increasingly vulnerable to concurrent heat stress, a critical abiotic factor that is intensified by climate change. This study employed genome-wide association studies (GWAS) to investigate \"stress memory,\" a phenomenon where prior stress exposure enhances a plant's response to subsequent stress events. In this study, we analyzed essential agronomic traits, including plant height, spike length, grain number, and thousand-kernel weight, in conjunction with biochemical markers such as chlorophyll content, proline, and soluble proteins. These assessments spanned three successive generations under heat stress, capturing transgenerational and intergenerational effects and uncovering the cumulative impacts of prolonged stress in the third generation. Markedly, our findings highlight the critical influence of heat stress on plant physiology across generational scales, showcasing significant reductions in chlorophyll content, which reflect stress-induced limitations on photosynthetic capacity. In contrast, the observed consistent and substantial increases in proline and soluble protein content across transgenerational, intergenerational, and third-generation stress memory stages underscore their vital roles in stress mitigation and cellular homeostasis. These results provide compelling evidence of generational stress memory, suggesting potential adaptive strategies that plants employ to cope with harsh environmental conditions. Interestingly, identifying significant SNP markers within key genomic regions using GWAS analysis further highlights the potential for harnessing these loci in breeding programs. These results shed light on the intricate mechanisms of barley's stress tolerance and underscore the potential of integrating genomic, epigenomic, and advanced phenotyping tools into breeding programs to develop heat-resilient cultivars.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":"115 2","pages":"42"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11103-025-01571-z","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Barley (Hordeum vulgare L.), a cornerstone of global cereal crops, is increasingly vulnerable to concurrent heat stress, a critical abiotic factor that is intensified by climate change. This study employed genome-wide association studies (GWAS) to investigate "stress memory," a phenomenon where prior stress exposure enhances a plant's response to subsequent stress events. In this study, we analyzed essential agronomic traits, including plant height, spike length, grain number, and thousand-kernel weight, in conjunction with biochemical markers such as chlorophyll content, proline, and soluble proteins. These assessments spanned three successive generations under heat stress, capturing transgenerational and intergenerational effects and uncovering the cumulative impacts of prolonged stress in the third generation. Markedly, our findings highlight the critical influence of heat stress on plant physiology across generational scales, showcasing significant reductions in chlorophyll content, which reflect stress-induced limitations on photosynthetic capacity. In contrast, the observed consistent and substantial increases in proline and soluble protein content across transgenerational, intergenerational, and third-generation stress memory stages underscore their vital roles in stress mitigation and cellular homeostasis. These results provide compelling evidence of generational stress memory, suggesting potential adaptive strategies that plants employ to cope with harsh environmental conditions. Interestingly, identifying significant SNP markers within key genomic regions using GWAS analysis further highlights the potential for harnessing these loci in breeding programs. These results shed light on the intricate mechanisms of barley's stress tolerance and underscore the potential of integrating genomic, epigenomic, and advanced phenotyping tools into breeding programs to develop heat-resilient cultivars.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Plant Molecular Biology
Plant Molecular Biology 生物-生化与分子生物学
自引率
2.00%
发文量
95
审稿时长
1.4 months
期刊介绍: Plant Molecular Biology is an international journal dedicated to rapid publication of original research articles in all areas of plant biology.The Editorial Board welcomes full-length manuscripts that address important biological problems of broad interest, including research in comparative genomics, functional genomics, proteomics, bioinformatics, computational biology, biochemical and regulatory networks, and biotechnology. Because space in the journal is limited, however, preference is given to publication of results that provide significant new insights into biological problems and that advance the understanding of structure, function, mechanisms, or regulation. Authors must ensure that results are of high quality and that manuscripts are written for a broad plant science audience.
期刊最新文献
Chemically-induced cellular stress signals are transmitted to alternative splicing via UsnRNA levels to alter gene expression in Arabidopsis thaliana. A glycogen synthase kinase-3 gene enhances grain yield heterosis in semi-dwarf rapeseed. Light regulates seed dormancy through FHY3-mediated activation of ACC OXIDASE 1 in Arabidopsis. Exploring the drought-responsive miRNAs and their corresponding target genes in chickpea root tissue. Inherited endurance: deciphering genetic associations of transgenerational and intergenerational heat stress memory in barley.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1