{"title":"Advances in bioinspired polymer hydrogel systems with biomedical functionalities.","authors":"Kazuhiko Ishihara","doi":"10.1080/14686996.2025.2469490","DOIUrl":null,"url":null,"abstract":"<p><p>The concepts of bioinspiration and biomimetics that seek to elucidate the morphology and functions of living organisms and specific reactions within cells, and extraction of important elements from these concepts to design functional molecules and high-performance materials are becoming more and more widespread. This review summarizes the progress in research on hydrogels inspired by the stimuli-responsiveness of cell functions. For application to a self-regulated release system of insulin to regulate blood glucose levels, various polymer hydrogels have been designed using bioactive molecules such as enzymes and lectins to sense glucose concentrations. In addition, as a fully synthetic glucose-responsive hydrogel, a complex of a polymer having phenylboronic acid groups that form reversible bonds with sugars and a multivalent hydroxyl group polymer has been researched. This reversible hydrogel system can be further developed to act as an extracellular matrix in which cells can preferably reside. The proliferation and differentiation of encapsulated cells in hydrogels are controlled by reversible changes in the hydrogel properties in response to sugar. Another advantage is that cells can be safely retrieved by adding sugar to dissociate the hydrogel. These bioinspired polymer hydrogels can serve as important materials for the development of new medical technologies, such as the controlled release of bioactive molecules, regulated cell culture environmental matrices, and applications in layered and three-dimensional cell culture systems to create organized tissue structures.</p>","PeriodicalId":21588,"journal":{"name":"Science and Technology of Advanced Materials","volume":"26 1","pages":"2469490"},"PeriodicalIF":7.4000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11892067/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Technology of Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/14686996.2025.2469490","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The concepts of bioinspiration and biomimetics that seek to elucidate the morphology and functions of living organisms and specific reactions within cells, and extraction of important elements from these concepts to design functional molecules and high-performance materials are becoming more and more widespread. This review summarizes the progress in research on hydrogels inspired by the stimuli-responsiveness of cell functions. For application to a self-regulated release system of insulin to regulate blood glucose levels, various polymer hydrogels have been designed using bioactive molecules such as enzymes and lectins to sense glucose concentrations. In addition, as a fully synthetic glucose-responsive hydrogel, a complex of a polymer having phenylboronic acid groups that form reversible bonds with sugars and a multivalent hydroxyl group polymer has been researched. This reversible hydrogel system can be further developed to act as an extracellular matrix in which cells can preferably reside. The proliferation and differentiation of encapsulated cells in hydrogels are controlled by reversible changes in the hydrogel properties in response to sugar. Another advantage is that cells can be safely retrieved by adding sugar to dissociate the hydrogel. These bioinspired polymer hydrogels can serve as important materials for the development of new medical technologies, such as the controlled release of bioactive molecules, regulated cell culture environmental matrices, and applications in layered and three-dimensional cell culture systems to create organized tissue structures.
期刊介绍:
Science and Technology of Advanced Materials (STAM) is a leading open access, international journal for outstanding research articles across all aspects of materials science. Our audience is the international community across the disciplines of materials science, physics, chemistry, biology as well as engineering.
The journal covers a broad spectrum of topics including functional and structural materials, synthesis and processing, theoretical analyses, characterization and properties of materials. Emphasis is placed on the interdisciplinary nature of materials science and issues at the forefront of the field, such as energy and environmental issues, as well as medical and bioengineering applications.
Of particular interest are research papers on the following topics:
Materials informatics and materials genomics
Materials for 3D printing and additive manufacturing
Nanostructured/nanoscale materials and nanodevices
Bio-inspired, biomedical, and biological materials; nanomedicine, and novel technologies for clinical and medical applications
Materials for energy and environment, next-generation photovoltaics, and green technologies
Advanced structural materials, materials for extreme conditions.