Multi-Layer Gaussian Splatting for Immersive Anatomy Visualization

Constantin Kleinbeck;Hannah Schieber;Klaus Engel;Ralf Gutjahr;Daniel Roth
{"title":"Multi-Layer Gaussian Splatting for Immersive Anatomy Visualization","authors":"Constantin Kleinbeck;Hannah Schieber;Klaus Engel;Ralf Gutjahr;Daniel Roth","doi":"10.1109/TVCG.2025.3549882","DOIUrl":null,"url":null,"abstract":"In medical image visualization, path tracing of volumetric medical data like computed tomography (CT) scans produces lifelike three-dimensional visualizations. Immersive virtual reality (VR) displays can further enhance the understanding of complex anatomies. Going beyond the diagnostic quality of traditional 2D slices, they enable interactive 3D evaluation of anatomies, supporting medical education and planning. Rendering high-quality visualizations in real-time, however, is computationally intensive and impractical for compute-constrained devices like mobile headsets. We propose a novel approach utilizing Gaussian Splatting (GS) to create an efficient but static intermediate representation of CT scans. We introduce a layered GS representation, incrementally including different anatomical structures while minimizing overlap and extending the GS training to remove inactive Gaussians. We further compress the created model with clustering across layers. Our approach achieves interactive frame rates while preserving anatomical structures, with quality adjustable to the target hardware. Compared to standard GS, our representation retains some of the explorative qualities initially enabled by immersive path tracing. Selective activation and clipping of layers are possible at rendering time, adding a degree of interactivity to otherwise static GS models. This could enable scenarios where high computational demands would otherwise prohibit using path-traced medical volumes.","PeriodicalId":94035,"journal":{"name":"IEEE transactions on visualization and computer graphics","volume":"31 5","pages":"2353-2363"},"PeriodicalIF":6.5000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10919012","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on visualization and computer graphics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10919012/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In medical image visualization, path tracing of volumetric medical data like computed tomography (CT) scans produces lifelike three-dimensional visualizations. Immersive virtual reality (VR) displays can further enhance the understanding of complex anatomies. Going beyond the diagnostic quality of traditional 2D slices, they enable interactive 3D evaluation of anatomies, supporting medical education and planning. Rendering high-quality visualizations in real-time, however, is computationally intensive and impractical for compute-constrained devices like mobile headsets. We propose a novel approach utilizing Gaussian Splatting (GS) to create an efficient but static intermediate representation of CT scans. We introduce a layered GS representation, incrementally including different anatomical structures while minimizing overlap and extending the GS training to remove inactive Gaussians. We further compress the created model with clustering across layers. Our approach achieves interactive frame rates while preserving anatomical structures, with quality adjustable to the target hardware. Compared to standard GS, our representation retains some of the explorative qualities initially enabled by immersive path tracing. Selective activation and clipping of layers are possible at rendering time, adding a degree of interactivity to otherwise static GS models. This could enable scenarios where high computational demands would otherwise prohibit using path-traced medical volumes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
沉浸式解剖可视化的多层高斯飞溅。
在医学图像可视化中,计算机断层扫描(CT)扫描等体积医学数据的路径跟踪产生逼真的三维可视化。沉浸式虚拟现实(VR)显示器可以进一步增强对复杂解剖结构的理解。它们超越了传统2D切片的诊断质量,能够对解剖结构进行交互式3D评估,支持医学教育和规划。然而,实时呈现高质量的可视化是计算密集型的,对于移动耳机等受计算限制的设备来说是不切实际的。我们提出了一种利用高斯溅射(GS)的新方法来创建一个有效但静态的CT扫描中间表示。我们引入了一种分层的GS表示,增量地包括不同的解剖结构,同时最小化重叠并扩展GS训练以去除非活跃的高斯分布。我们通过跨层聚类进一步压缩创建的模型。我们的方法在保持解剖结构的同时实现了交互式帧率,质量可根据目标硬件进行调整。与标准GS相比,我们的表现保留了一些最初通过沉浸式路径追踪实现的探索品质。在渲染时可以选择性地激活和裁剪图层,从而为静态GS模型增加一定程度的交互性。这可以实现高计算需求的场景,否则将禁止使用路径跟踪医疗卷。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DynAvatar: Dynamic 3D Head Avatar Deformation With Expression Guided Gaussian Splatting. Understanding the Research-Practice Gap in Visualization Design Guidelines. QuRAFT: Enhancing Quantum Algorithm Design by Visual Linking Between Mathematical Concepts and Quantum Circuits. DanceAgent: Dance Movement Refinement With LLM Agent. Do You "Trust" This Visualization? An Inventory to Measure Trust in Visualizations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1