Mario Lorenz;Maximilian Kaluschke;Annegret Melzer;Nina Pillen;Magdalena Sanrow;Andrea Hoffmann;Dennis Schmidt;André Dettmann;Angelika C. Bullinger;Jérôme Perret;Gabriel Zachmann
{"title":"HIPS - A Surgical Virtual Reality Training System for Total Hip Arthroplasty (THA) with Realistic Force Feedback","authors":"Mario Lorenz;Maximilian Kaluschke;Annegret Melzer;Nina Pillen;Magdalena Sanrow;Andrea Hoffmann;Dennis Schmidt;André Dettmann;Angelika C. Bullinger;Jérôme Perret;Gabriel Zachmann","doi":"10.1109/TVCG.2025.3549896","DOIUrl":null,"url":null,"abstract":"Virtual reality training simulations to acquire surgical skills are important for increasing patient safety and save valuable resources, e.g., cadavers, supervision and operating room time. However, as surgery is a craft, simulators must not only provide a high degree of visual realism, but especially a realistic haptic behavior. While such simulators exist for surgeries like laparoscopy or arthroscopy, other surgical fields, especially where large forces need to be exerted, like total hip arthroplasty (THA; implantation of a hip joint protheses), lack realistic VR training simulations. In this paper we present for the first time a novel VR training simulation for the five steps of THA (from femur head resection to stem implantation) with realis-tic haptic feedback. To achieve this, a novel haptic hammering device, an upgraded version of the Virtuose 6D haptic device from Haption, novel algorithms for collision detection, haptic rendering, and material removal are introduced. In a study with 17 surgeons of diverse experience levels, we confirmed the realism, usefulness and usability of our novel methods.","PeriodicalId":94035,"journal":{"name":"IEEE transactions on visualization and computer graphics","volume":"31 5","pages":"3418-3428"},"PeriodicalIF":6.5000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on visualization and computer graphics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10919009/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Virtual reality training simulations to acquire surgical skills are important for increasing patient safety and save valuable resources, e.g., cadavers, supervision and operating room time. However, as surgery is a craft, simulators must not only provide a high degree of visual realism, but especially a realistic haptic behavior. While such simulators exist for surgeries like laparoscopy or arthroscopy, other surgical fields, especially where large forces need to be exerted, like total hip arthroplasty (THA; implantation of a hip joint protheses), lack realistic VR training simulations. In this paper we present for the first time a novel VR training simulation for the five steps of THA (from femur head resection to stem implantation) with realis-tic haptic feedback. To achieve this, a novel haptic hammering device, an upgraded version of the Virtuose 6D haptic device from Haption, novel algorithms for collision detection, haptic rendering, and material removal are introduced. In a study with 17 surgeons of diverse experience levels, we confirmed the realism, usefulness and usability of our novel methods.