Biological effects of high-LET irradiation on the circulatory system.

Yumi Saigusa, Mark P Little, Omid Azimzadeh, Nobuyuki Hamada
{"title":"Biological effects of high-LET irradiation on the circulatory system.","authors":"Yumi Saigusa, Mark P Little, Omid Azimzadeh, Nobuyuki Hamada","doi":"10.1080/09553002.2025.2470947","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>High-linear energy transfer (LET) radiation is generally thought to be more biologically effective in various tissues than low-LET radiation, but whether this also applies to the circulatory system remains unclear. We therefore reviewed biological studies about the effects of high-LET radiation on the circulatory system.</p><p><strong>Conclusions: </strong>We identified 76 relevant papers (24 in vitro, 2 ex vivo, 51 in vivo, one overlapping). In vitro studies used human, bovine, porcine or chick vascular endothelial cells or cardiomyocytes, while ex vivo studies used porcine hearts. In vivo studies used mice, rats, rabbits, dogs or pigs. The types of high-LET radiation used were neutrons, α particles, heavy ions and negative pions. Most studies used a single dose, although some investigated fractionation effects. Twenty-one studies estimated the relative biological effectiveness (RBE) that ranged from 0.1 to 130, depending on radiation quality and endpoint. A meta-analysis of 6 in vitro and 8 in vivo studies (selected based on the feasibility of estimating the RBE and its uncertainty) suggested an RBE of 6.69 (95% confidence intervals (CI): 2.51, 10.88) for in vitro studies and 1.14 (95% CI: 0.91, 1.37) for in vivo studies. The meta-analysis of these 14 studies yielded an RBE of 2.88 (95% CI: 1.52, 4.25). This suggests that high-LET radiation is only slightly more effective than low-LET radiation, although substantial inter-study heterogeneity complicates interpretation. Therapeutic effects have also been reported in disease models. Further research is needed to better understand the effects on the cardiovascular system and to improve radiation protection.</p>","PeriodicalId":94057,"journal":{"name":"International journal of radiation biology","volume":" ","pages":"1-24"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of radiation biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09553002.2025.2470947","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: High-linear energy transfer (LET) radiation is generally thought to be more biologically effective in various tissues than low-LET radiation, but whether this also applies to the circulatory system remains unclear. We therefore reviewed biological studies about the effects of high-LET radiation on the circulatory system.

Conclusions: We identified 76 relevant papers (24 in vitro, 2 ex vivo, 51 in vivo, one overlapping). In vitro studies used human, bovine, porcine or chick vascular endothelial cells or cardiomyocytes, while ex vivo studies used porcine hearts. In vivo studies used mice, rats, rabbits, dogs or pigs. The types of high-LET radiation used were neutrons, α particles, heavy ions and negative pions. Most studies used a single dose, although some investigated fractionation effects. Twenty-one studies estimated the relative biological effectiveness (RBE) that ranged from 0.1 to 130, depending on radiation quality and endpoint. A meta-analysis of 6 in vitro and 8 in vivo studies (selected based on the feasibility of estimating the RBE and its uncertainty) suggested an RBE of 6.69 (95% confidence intervals (CI): 2.51, 10.88) for in vitro studies and 1.14 (95% CI: 0.91, 1.37) for in vivo studies. The meta-analysis of these 14 studies yielded an RBE of 2.88 (95% CI: 1.52, 4.25). This suggests that high-LET radiation is only slightly more effective than low-LET radiation, although substantial inter-study heterogeneity complicates interpretation. Therapeutic effects have also been reported in disease models. Further research is needed to better understand the effects on the cardiovascular system and to improve radiation protection.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Biological effects of high-LET irradiation on the circulatory system. Microbeam radiation therapy for lung cancer: a review of experimental setups and biological endpoints in preclinical studies. Sensitive organelles of U251 MG glioblastomas to boron neutron capture therapy. Effects of low dose rate radiotherapy on pain relief, performance score, and quality of life in patients with knee osteoarthritis; a double-blind sham-controlled randomized clinical trial. Exploring the interplay of selenoproteins and mir-675 in breast cancer: a focus on radiotherapy effects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1