{"title":"Quantum Zeno Monte Carlo for computing observables","authors":"Mancheon Han, Hyowon Park, Sangkook Choi","doi":"10.1038/s41534-025-01002-3","DOIUrl":null,"url":null,"abstract":"<p>The recent development of logical quantum processors marks a pivotal transition from the noisy intermediate-scale quantum (NISQ) era to the fault-tolerant quantum computing (FTQC) era. These devices have the potential to address classically challenging problems with polynomial computational time using quantum properties. However, they remain susceptible to noise, necessitating noise resilient algorithms. We introduce Quantum Zeno Monte Carlo (QZMC), a classical-quantum hybrid algorithm that demonstrates resilience to device noise and Trotter errors while showing polynomial computational cost for a gapped system. QZMC computes static and dynamic properties without requiring initial state overlap or variational parameters, offering reduced quantum circuit depth.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"54 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Information","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41534-025-01002-3","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The recent development of logical quantum processors marks a pivotal transition from the noisy intermediate-scale quantum (NISQ) era to the fault-tolerant quantum computing (FTQC) era. These devices have the potential to address classically challenging problems with polynomial computational time using quantum properties. However, they remain susceptible to noise, necessitating noise resilient algorithms. We introduce Quantum Zeno Monte Carlo (QZMC), a classical-quantum hybrid algorithm that demonstrates resilience to device noise and Trotter errors while showing polynomial computational cost for a gapped system. QZMC computes static and dynamic properties without requiring initial state overlap or variational parameters, offering reduced quantum circuit depth.
期刊介绍:
The scope of npj Quantum Information spans across all relevant disciplines, fields, approaches and levels and so considers outstanding work ranging from fundamental research to applications and technologies.