Zi-Yi Du, Miao Xie, Wenbo Qiu, Ding-Chong Han, Shi-Yong Zhang, Ying Zeng, Weizhao Cai, Takayoshi Nakamura, Rui-Kang Huang, Chun-Ting He
{"title":"A Spiro-Driven Ferroelectric Coordination Polymer Exhibiting Distinct Phase Transitions under Thermal and Pressure Stimuli","authors":"Zi-Yi Du, Miao Xie, Wenbo Qiu, Ding-Chong Han, Shi-Yong Zhang, Ying Zeng, Weizhao Cai, Takayoshi Nakamura, Rui-Kang Huang, Chun-Ting He","doi":"10.1002/anie.202500027","DOIUrl":null,"url":null,"abstract":"Controllable strategies for the design of molecular ferroelectrics have been actively pursued in recent years due to their promising applications in modern electronic devices. In this work, we present a spiro-driven approach for the design of a new class of molecular ferroelectrics. Using 2-morpholinoethanol (MEO) as a bidentate chelating ligand and the SCN− anion as a bridging co-ligand, we obtained a neutral chain-like ferroelectric coordination polymer, [Cd(MEO)(SCN)2]. Interestingly, it undergoes both a thermal-induced phase transition, driven by ring-conformational flipping of the spiro-like [Cd(MEO)] fragment, and a pressure-induced transition, triggered by significant deformation of the spring-like [Cd(SCN)2]∞ helical chain. Unlike most previously reported ferroelectric coordination polymers, which often rely on organic cationic guests, this work introduces a new avenue for designing neutral ferroelectric coordination polymers. Overall, the spiro-driven strategy provides valuable insights and a novel structural motif for the development of advanced molecular ferroelectrics.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"81 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202500027","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Controllable strategies for the design of molecular ferroelectrics have been actively pursued in recent years due to their promising applications in modern electronic devices. In this work, we present a spiro-driven approach for the design of a new class of molecular ferroelectrics. Using 2-morpholinoethanol (MEO) as a bidentate chelating ligand and the SCN− anion as a bridging co-ligand, we obtained a neutral chain-like ferroelectric coordination polymer, [Cd(MEO)(SCN)2]. Interestingly, it undergoes both a thermal-induced phase transition, driven by ring-conformational flipping of the spiro-like [Cd(MEO)] fragment, and a pressure-induced transition, triggered by significant deformation of the spring-like [Cd(SCN)2]∞ helical chain. Unlike most previously reported ferroelectric coordination polymers, which often rely on organic cationic guests, this work introduces a new avenue for designing neutral ferroelectric coordination polymers. Overall, the spiro-driven strategy provides valuable insights and a novel structural motif for the development of advanced molecular ferroelectrics.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.