Dominique Lagasca , Rupam Ghosh , Yiling Xiao , Kendra K. Frederick
{"title":"Stability of the polarization agent AsymPolPOK in intact and lysed mammalian cells","authors":"Dominique Lagasca , Rupam Ghosh , Yiling Xiao , Kendra K. Frederick","doi":"10.1016/j.jmr.2025.107864","DOIUrl":null,"url":null,"abstract":"<div><div>Dynamic nuclear polarization (DNP) solid-state NMR enables detection of proteins inside cells through sensitivity enhancement from nitroxide biradical polarization agents. AsymPolPOK, a novel water-soluble asymmetric nitroxide biradical, offers superior sensitivity and faster build-up times compared to existing agents like AMUPol. Here, we characterize AsymPolPOK's behavior in mammalian HEK293 cells, examining its cellular distribution, reduction kinetics, and DNP performance. We demonstrate that electroporation achieves uniform cellular delivery of AsymPolPOK, including nuclear permeation, with no cytotoxicity at millimolar concentrations. However, the cellular environment rapidly reduces AsymPolPOK to its monoradical form, with one nitroxide center showing greater reduction resistance than the other. While AsymPolPOK maintains high DNP enhancements and short build-up times in lysates, its performance in intact cells depends critically on delivery method and exposure time to cellular constituents. Electroporation yields higher, more uniform enhancements compared to incubation, but prolonged exposure to the cellular environment diminishes DNP performance in both cases. These findings establish AsymPolPOK's potential for in-cell DNP NMR while highlighting the need for developing more bio-resistant polarization agents to further advance cellular structural biology studies.</div></div>","PeriodicalId":16267,"journal":{"name":"Journal of magnetic resonance","volume":"374 ","pages":"Article 107864"},"PeriodicalIF":2.0000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of magnetic resonance","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1090780725000369","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Dynamic nuclear polarization (DNP) solid-state NMR enables detection of proteins inside cells through sensitivity enhancement from nitroxide biradical polarization agents. AsymPolPOK, a novel water-soluble asymmetric nitroxide biradical, offers superior sensitivity and faster build-up times compared to existing agents like AMUPol. Here, we characterize AsymPolPOK's behavior in mammalian HEK293 cells, examining its cellular distribution, reduction kinetics, and DNP performance. We demonstrate that electroporation achieves uniform cellular delivery of AsymPolPOK, including nuclear permeation, with no cytotoxicity at millimolar concentrations. However, the cellular environment rapidly reduces AsymPolPOK to its monoradical form, with one nitroxide center showing greater reduction resistance than the other. While AsymPolPOK maintains high DNP enhancements and short build-up times in lysates, its performance in intact cells depends critically on delivery method and exposure time to cellular constituents. Electroporation yields higher, more uniform enhancements compared to incubation, but prolonged exposure to the cellular environment diminishes DNP performance in both cases. These findings establish AsymPolPOK's potential for in-cell DNP NMR while highlighting the need for developing more bio-resistant polarization agents to further advance cellular structural biology studies.
期刊介绍:
The Journal of Magnetic Resonance presents original technical and scientific papers in all aspects of magnetic resonance, including nuclear magnetic resonance spectroscopy (NMR) of solids and liquids, electron spin/paramagnetic resonance (EPR), in vivo magnetic resonance imaging (MRI) and spectroscopy (MRS), nuclear quadrupole resonance (NQR) and magnetic resonance phenomena at nearly zero fields or in combination with optics. The Journal''s main aims include deepening the physical principles underlying all these spectroscopies, publishing significant theoretical and experimental results leading to spectral and spatial progress in these areas, and opening new MR-based applications in chemistry, biology and medicine. The Journal also seeks descriptions of novel apparatuses, new experimental protocols, and new procedures of data analysis and interpretation - including computational and quantum-mechanical methods - capable of advancing MR spectroscopy and imaging.