Investigation of enhanced peak lift performance and stall angle delay by attachment of Vortex Generators on blade surfaces of Vertical Axis Ocean Current Turbine

IF 4.6 2区 工程技术 Q1 ENGINEERING, CIVIL Ocean Engineering Pub Date : 2025-03-12 DOI:10.1016/j.oceaneng.2025.120762
Dendy Satrio , Erwandi , Daif Rahuna
{"title":"Investigation of enhanced peak lift performance and stall angle delay by attachment of Vortex Generators on blade surfaces of Vertical Axis Ocean Current Turbine","authors":"Dendy Satrio ,&nbsp;Erwandi ,&nbsp;Daif Rahuna","doi":"10.1016/j.oceaneng.2025.120762","DOIUrl":null,"url":null,"abstract":"<div><div>Efforts to enhance the efficiency and self-starting capability of Vertical Axis Ocean Current Turbine (VAOCT) at low ocean current speeds have recently become a major area of study. As the VAOCT blades rotate, it experiences varying angles of attack (<em>α</em>) relative to the ocean's current direction. This study investigated the impact of Vortex Generators (VG) on the static NACA 0021 hydrofoil VAOCT blade by varying VG height (<em>h</em>) within an <em>α</em> range of 0°–180°. Computational Fluid Dynamics (CFD) simulations were employed for analyzing the case configurations, providing new insights modified VAOCT with VG on its blade surface. The performance of the NACA 0021 with VG showed improvement. The coefficient of lift (<em>C</em><sub><em>l</em></sub>) increased by up to 20.2% for the VG configuration with <em>h</em> 1% <em>C</em> at an <em>α</em> of 20°. For the VG with <em>h</em> 2.5% <em>C</em>, the <em>C</em><sub><em>l</em></sub> increased by up to 8%. The stall angle was delayed from 20° to 25° for the VG with <em>h</em> 1% C and from 20° to 30° for the VG with <em>h</em> 2.5% <em>C</em>. The flow over the blade with VG also qualitatively improved, evidenced by better pressure and velocity contours. These results indicate that VG can positively enhance VAOCT performance.</div></div>","PeriodicalId":19403,"journal":{"name":"Ocean Engineering","volume":"326 ","pages":"Article 120762"},"PeriodicalIF":4.6000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0029801825004779","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

Efforts to enhance the efficiency and self-starting capability of Vertical Axis Ocean Current Turbine (VAOCT) at low ocean current speeds have recently become a major area of study. As the VAOCT blades rotate, it experiences varying angles of attack (α) relative to the ocean's current direction. This study investigated the impact of Vortex Generators (VG) on the static NACA 0021 hydrofoil VAOCT blade by varying VG height (h) within an α range of 0°–180°. Computational Fluid Dynamics (CFD) simulations were employed for analyzing the case configurations, providing new insights modified VAOCT with VG on its blade surface. The performance of the NACA 0021 with VG showed improvement. The coefficient of lift (Cl) increased by up to 20.2% for the VG configuration with h 1% C at an α of 20°. For the VG with h 2.5% C, the Cl increased by up to 8%. The stall angle was delayed from 20° to 25° for the VG with h 1% C and from 20° to 30° for the VG with h 2.5% C. The flow over the blade with VG also qualitatively improved, evidenced by better pressure and velocity contours. These results indicate that VG can positively enhance VAOCT performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Ocean Engineering
Ocean Engineering 工程技术-工程:大洋
CiteScore
7.30
自引率
34.00%
发文量
2379
审稿时长
8.1 months
期刊介绍: Ocean Engineering provides a medium for the publication of original research and development work in the field of ocean engineering. Ocean Engineering seeks papers in the following topics.
期刊最新文献
Combining Conv-LSTM and wind-wave data for enhanced sea wave forecasting in the Mediterranean Sea Comprehensive experimental testing of parameter sensitivity on a model predictive controller for path following in shallow water Investigation of enhanced peak lift performance and stall angle delay by attachment of Vortex Generators on blade surfaces of Vertical Axis Ocean Current Turbine Integrated front reconstruction and AUV tracking control with Bayesian optimization and NMPC Bubble flow characteristics in subsea pipelines: Insights into elbow and blind tee under varied flow directions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1