Moisés J. B. B. Davi;Mario Oleskovicz;Felipe V. Lopes
{"title":"A Novel High-Sensitivity Time-Domain Fault Classifier Applied to Inverter-Based Resource Interconnection Lines","authors":"Moisés J. B. B. Davi;Mario Oleskovicz;Felipe V. Lopes","doi":"10.1109/ACCESS.2025.3548539","DOIUrl":null,"url":null,"abstract":"This paper presents a performance review of existing fault classifiers when applied to Inverter-Based Resource (IBR) interconnection lines and proposes a new high-sensitivity time-domain fault classification methodology. The proposed method is based on self-adjusting thresholds, and it is investigated regarding its performance when applied to IBR or conventional generator terminals, being validated for different grid short-circuit levels, various IBR topologies/controls, and considering several fault types, inception angles, resistances, and locations. A typical IBR interconnection system topology is modeled using the PSCAD software for such studies. Comparisons with the main state-of-the-art phase-selection and fault classification methods highlight the superiority of the proposed one that, besides overcoming the challenges presented by IBRs for this task, provides shorter operating times by not relying on phasor estimation techniques.","PeriodicalId":13079,"journal":{"name":"IEEE Access","volume":"13 ","pages":"41590-41606"},"PeriodicalIF":3.4000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10912499","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Access","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10912499/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a performance review of existing fault classifiers when applied to Inverter-Based Resource (IBR) interconnection lines and proposes a new high-sensitivity time-domain fault classification methodology. The proposed method is based on self-adjusting thresholds, and it is investigated regarding its performance when applied to IBR or conventional generator terminals, being validated for different grid short-circuit levels, various IBR topologies/controls, and considering several fault types, inception angles, resistances, and locations. A typical IBR interconnection system topology is modeled using the PSCAD software for such studies. Comparisons with the main state-of-the-art phase-selection and fault classification methods highlight the superiority of the proposed one that, besides overcoming the challenges presented by IBRs for this task, provides shorter operating times by not relying on phasor estimation techniques.
IEEE AccessCOMPUTER SCIENCE, INFORMATION SYSTEMSENGIN-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
9.80
自引率
7.70%
发文量
6673
审稿时长
6 weeks
期刊介绍:
IEEE Access® is a multidisciplinary, open access (OA), applications-oriented, all-electronic archival journal that continuously presents the results of original research or development across all of IEEE''s fields of interest.
IEEE Access will publish articles that are of high interest to readers, original, technically correct, and clearly presented. Supported by author publication charges (APC), its hallmarks are a rapid peer review and publication process with open access to all readers. Unlike IEEE''s traditional Transactions or Journals, reviews are "binary", in that reviewers will either Accept or Reject an article in the form it is submitted in order to achieve rapid turnaround. Especially encouraged are submissions on:
Multidisciplinary topics, or applications-oriented articles and negative results that do not fit within the scope of IEEE''s traditional journals.
Practical articles discussing new experiments or measurement techniques, interesting solutions to engineering.
Development of new or improved fabrication or manufacturing techniques.
Reviews or survey articles of new or evolving fields oriented to assist others in understanding the new area.