Chang-Sheng Ma;Xiang-Ran Du;Jing Lou;Ming-Qian Wang
{"title":"A User Behavior Prediction Method for Web Applications Based on Deep Forest","authors":"Chang-Sheng Ma;Xiang-Ran Du;Jing Lou;Ming-Qian Wang","doi":"10.13052/jwe1540-9589.2412","DOIUrl":null,"url":null,"abstract":"To increase the sales of agricultural products in e-commerce, understanding customer preferences is essential. In agricultural web applications, data mining techniques can help farmers analyze customer behavior patterns and identify preferences, thus optimizing product design or offering more precise personalized services, which, in turn, can enhance farmers' decision-making in agricultural production. This study proposes a web application user behavior prediction method based on deep forest, which addresses the issue of traditional learning methods requiring a large number of hyperparameter settings. Analysis results show that the Mondrian deep forest model has an accuracy of 95.42% and a running time of 55 s. The accuracy and efficiency of the Mondrian deep forest model are higher than for other models, and the proposed model can improve the accuracy of predicting user behavior in web applications. The effectiveness of the algorithm has been validated through practical testing.","PeriodicalId":49952,"journal":{"name":"Journal of Web Engineering","volume":"24 1","pages":"39-56"},"PeriodicalIF":0.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10924703","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Web Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10924703/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
To increase the sales of agricultural products in e-commerce, understanding customer preferences is essential. In agricultural web applications, data mining techniques can help farmers analyze customer behavior patterns and identify preferences, thus optimizing product design or offering more precise personalized services, which, in turn, can enhance farmers' decision-making in agricultural production. This study proposes a web application user behavior prediction method based on deep forest, which addresses the issue of traditional learning methods requiring a large number of hyperparameter settings. Analysis results show that the Mondrian deep forest model has an accuracy of 95.42% and a running time of 55 s. The accuracy and efficiency of the Mondrian deep forest model are higher than for other models, and the proposed model can improve the accuracy of predicting user behavior in web applications. The effectiveness of the algorithm has been validated through practical testing.
期刊介绍:
The World Wide Web and its associated technologies have become a major implementation and delivery platform for a large variety of applications, ranging from simple institutional information Web sites to sophisticated supply-chain management systems, financial applications, e-government, distance learning, and entertainment, among others. Such applications, in addition to their intrinsic functionality, also exhibit the more complex behavior of distributed applications.