{"title":"Physical model test on the influence of reservoir water level fluctuation on the deformation of landslides with weak interlayers","authors":"Song Wei, Feng Ji, Feng Lv, Lei Wang","doi":"10.1007/s10064-025-04210-5","DOIUrl":null,"url":null,"abstract":"<div><p>The weak mechanical properties of weak interlayers are crucial for controlling landslide deformation and failure under water level fluctuation. The instability and failure of landslides in reservoirs can lead to unpredictable consequences. In this study, the reservoir bank landslide with a weak interlayer was selected as the research subject. The material composition, structural characteristics, mechanical properties, and permeability of the landslide were determined through field investigations and tests. Additionally, a physical model test was conducted to explore the groundwater variation rules and deformation failure modes of landslides with weak interlayers under different water level fluctuation rates. The results indicate that due to the low permeability of the interlayer, there was a significant lag in monitoring data such as pore water pressure within the interlayer under the same water level fluctuation rate. At the same point, the faster the water level fluctuation rate, the greater the degree of lag. The deformation and failure mode of landslide with weak interlayer under reservoir water level fluctuation can be summarized as the following five stages: slope toe erosion stage, cracks on slope surface and interlayer stage, micro-collapse of slope toes and crack expansion of slope surface and interlayer stage, local micro-collapse of slope toe and crack penetration of slope body stage, crack development leads to landslide of slope body stage. This study provides theoretical support for prevention and control of landslides with weak interlayers in the gravel soils of reservoirs.</p></div>","PeriodicalId":500,"journal":{"name":"Bulletin of Engineering Geology and the Environment","volume":"84 4","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Engineering Geology and the Environment","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10064-025-04210-5","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
The weak mechanical properties of weak interlayers are crucial for controlling landslide deformation and failure under water level fluctuation. The instability and failure of landslides in reservoirs can lead to unpredictable consequences. In this study, the reservoir bank landslide with a weak interlayer was selected as the research subject. The material composition, structural characteristics, mechanical properties, and permeability of the landslide were determined through field investigations and tests. Additionally, a physical model test was conducted to explore the groundwater variation rules and deformation failure modes of landslides with weak interlayers under different water level fluctuation rates. The results indicate that due to the low permeability of the interlayer, there was a significant lag in monitoring data such as pore water pressure within the interlayer under the same water level fluctuation rate. At the same point, the faster the water level fluctuation rate, the greater the degree of lag. The deformation and failure mode of landslide with weak interlayer under reservoir water level fluctuation can be summarized as the following five stages: slope toe erosion stage, cracks on slope surface and interlayer stage, micro-collapse of slope toes and crack expansion of slope surface and interlayer stage, local micro-collapse of slope toe and crack penetration of slope body stage, crack development leads to landslide of slope body stage. This study provides theoretical support for prevention and control of landslides with weak interlayers in the gravel soils of reservoirs.
期刊介绍:
Engineering geology is defined in the statutes of the IAEG as the science devoted to the investigation, study and solution of engineering and environmental problems which may arise as the result of the interaction between geology and the works or activities of man, as well as of the prediction of and development of measures for the prevention or remediation of geological hazards. Engineering geology embraces:
• the applications/implications of the geomorphology, structural geology, and hydrogeological conditions of geological formations;
• the characterisation of the mineralogical, physico-geomechanical, chemical and hydraulic properties of all earth materials involved in construction, resource recovery and environmental change;
• the assessment of the mechanical and hydrological behaviour of soil and rock masses;
• the prediction of changes to the above properties with time;
• the determination of the parameters to be considered in the stability analysis of engineering works and earth masses.