Soil nitrogen dynamics on a saline-alkali sunflower land under arid region in Western Inner Mongolia

Liming Lai, Hanxiao Feng, Peng Zhang, Xueao Gao, Man Wang, Qiya Peng, Yang Yang, Haiwei Wang
{"title":"Soil nitrogen dynamics on a saline-alkali sunflower land under arid region in Western Inner Mongolia","authors":"Liming Lai,&nbsp;Hanxiao Feng,&nbsp;Peng Zhang,&nbsp;Xueao Gao,&nbsp;Man Wang,&nbsp;Qiya Peng,&nbsp;Yang Yang,&nbsp;Haiwei Wang","doi":"10.1002/saj2.70030","DOIUrl":null,"url":null,"abstract":"<p>Sunflower (<i>Helianthus annuus</i> L.), a dominant crop in Hetao Irrigation District, Western Inner Mongolia, is cultivated in arid and saline-alkaline fields due to their salt and alkali tolerance, ensuring that farmers’ income from these fields is not lower than those from fertile lands. However, little is known about the integrated analysis of nitrogen (N) dynamics, including soil total N (TN), nitrate (NO<sub>3</sub><sup>−</sup>), leachate TN and NO<sub>3</sub><sup>−</sup>, nitrous oxide (N<sub>2</sub>O) fluxes, and N cycling microbial gene abundance in sunflower fields. The specific objective was to explore N dynamics for 2021 through 2023 in sunflower seeded to saline-alkali croplands under arid condition based on treatments of irrigation rate (I rate: I1, 5110; I2, 4050; I3, 2985 m<sup>3</sup> ha<sup>−1</sup>) for washing salinity by irrigation and nitrogen fertilization rate (N rate: N1, 750; N2, 600; N3, 450; N0, 0 kg ha<sup>−1</sup>). Our findings indicated that I rate did not affect soil N dynamics; N rate significantly increased soil TN, NO<sub>3</sub><sup>−</sup> and N<sub>2</sub>O fluxes, especially showing an extremely significant increase for leachate TN and NO<sub>3</sub><sup>−</sup> leachate. The interaction of I and N rates impacted soil TN, NO<sub>3</sub><sup>−</sup>, their leachate, and N cycling microbial gene abundances, especially denitrification genes. Soil leachate TN and NO<sub>3</sub><sup>−</sup> increased exponentially over time. Soil N<sub>2</sub>O fluxes increased annually with the growth of sunflowers. In the saline-alkali sunflower fields, low N rate (450 kg ha <sup>−1</sup>) can be an optimal strategy, and the precise calibration of I and N rates can guarantee adequate N dynamics and yields, highlighting the intricate balance required for sustainable agricultural practices.</p>","PeriodicalId":101043,"journal":{"name":"Proceedings - Soil Science Society of America","volume":"89 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings - Soil Science Society of America","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/saj2.70030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Sunflower (Helianthus annuus L.), a dominant crop in Hetao Irrigation District, Western Inner Mongolia, is cultivated in arid and saline-alkaline fields due to their salt and alkali tolerance, ensuring that farmers’ income from these fields is not lower than those from fertile lands. However, little is known about the integrated analysis of nitrogen (N) dynamics, including soil total N (TN), nitrate (NO3), leachate TN and NO3, nitrous oxide (N2O) fluxes, and N cycling microbial gene abundance in sunflower fields. The specific objective was to explore N dynamics for 2021 through 2023 in sunflower seeded to saline-alkali croplands under arid condition based on treatments of irrigation rate (I rate: I1, 5110; I2, 4050; I3, 2985 m3 ha−1) for washing salinity by irrigation and nitrogen fertilization rate (N rate: N1, 750; N2, 600; N3, 450; N0, 0 kg ha−1). Our findings indicated that I rate did not affect soil N dynamics; N rate significantly increased soil TN, NO3 and N2O fluxes, especially showing an extremely significant increase for leachate TN and NO3 leachate. The interaction of I and N rates impacted soil TN, NO3, their leachate, and N cycling microbial gene abundances, especially denitrification genes. Soil leachate TN and NO3 increased exponentially over time. Soil N2O fluxes increased annually with the growth of sunflowers. In the saline-alkali sunflower fields, low N rate (450 kg ha −1) can be an optimal strategy, and the precise calibration of I and N rates can guarantee adequate N dynamics and yields, highlighting the intricate balance required for sustainable agricultural practices.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Advances in technology for using Indicator of Reduction in Soils (IRIS) to quantify porewater sulfide levels in the coastal zone Soil nitrogen dynamics on a saline-alkali sunflower land under arid region in Western Inner Mongolia Soil organic carbon measurements influence FT-NIR model training in calcareous soils of Saskatchewan Cover crops have positive and negative effects on soil properties and crop yield over a 15-year timespan Shrinkage analysis of repacked soil samples enables quantifying the soil's potential physical quality
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1