Novel derivatives of thiohydantoin-containing tetrahydro-β-carboline possess activity against influenza virus at late stages of viral cycle without affecting viral neuraminidase
Derenik S. Khachatryan, Vasiliy N. Osipov, Anton V. Kolotaev, Svetlana K. Belus, Karine R. Matevosyan, Iana L. Esaulkova, Shokhrukh A. Khasanov, Polina A. Ilyina, Alexandrina S. Volobueva, Edward S. Ramsay, Vladimir V. Zarubaev
{"title":"Novel derivatives of thiohydantoin-containing tetrahydro-β-carboline possess activity against influenza virus at late stages of viral cycle without affecting viral neuraminidase","authors":"Derenik S. Khachatryan, Vasiliy N. Osipov, Anton V. Kolotaev, Svetlana K. Belus, Karine R. Matevosyan, Iana L. Esaulkova, Shokhrukh A. Khasanov, Polina A. Ilyina, Alexandrina S. Volobueva, Edward S. Ramsay, Vladimir V. Zarubaev","doi":"10.1002/ardp.202400733","DOIUrl":null,"url":null,"abstract":"<p>Influenza infection represents a serious challenge for virological surveillance and healthcare systems in all countries globally. Despite obvious success in control of influenza through vaccination and antiviral drug development, this infection remains poorly controlled due to antigenic drift and fast selection of drug-resistant viral variants. The design of novel drugs with alternative targets and mechanisms of action is, therefore, an important goal for medical science worldwide. In the current study, we describe the chemical synthesis of novel tetrahydro-β-carboline derivatives containing a thiohydantoin fragment, as well as their antiviral activity against influenza virus A/Puerto Rico/8/34 (H1N1). In general, the library of compounds was of low toxicity. Of the 23 compounds under investigation, 10 (43.5%) displayed a selectivity index (SI) of 10 or higher, their activity strongly exceeding that of the reference compound rimantadine. The most active compounds have also demonstrated suppressing activity against the phylogenetically distinct influenza virus of type B. These compounds, similar to the reference compound zanamivir, were active at very late stages of the viral cycle (4–6 h postinfection), suggesting interference with processes of virion assembly and budding. However, no direct inhibiting activity against viral neuraminidase has been demonstrated. The results obtained can be considered as a rationale for further structural optimization and study of this group as potential broad-range antivirals effective against influenza viruses.</p>","PeriodicalId":128,"journal":{"name":"Archiv der Pharmazie","volume":"358 3","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Pharmazie","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ardp.202400733","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Influenza infection represents a serious challenge for virological surveillance and healthcare systems in all countries globally. Despite obvious success in control of influenza through vaccination and antiviral drug development, this infection remains poorly controlled due to antigenic drift and fast selection of drug-resistant viral variants. The design of novel drugs with alternative targets and mechanisms of action is, therefore, an important goal for medical science worldwide. In the current study, we describe the chemical synthesis of novel tetrahydro-β-carboline derivatives containing a thiohydantoin fragment, as well as their antiviral activity against influenza virus A/Puerto Rico/8/34 (H1N1). In general, the library of compounds was of low toxicity. Of the 23 compounds under investigation, 10 (43.5%) displayed a selectivity index (SI) of 10 or higher, their activity strongly exceeding that of the reference compound rimantadine. The most active compounds have also demonstrated suppressing activity against the phylogenetically distinct influenza virus of type B. These compounds, similar to the reference compound zanamivir, were active at very late stages of the viral cycle (4–6 h postinfection), suggesting interference with processes of virion assembly and budding. However, no direct inhibiting activity against viral neuraminidase has been demonstrated. The results obtained can be considered as a rationale for further structural optimization and study of this group as potential broad-range antivirals effective against influenza viruses.
期刊介绍:
Archiv der Pharmazie - Chemistry in Life Sciences is an international journal devoted to research and development in all fields of pharmaceutical and medicinal chemistry. Emphasis is put on papers combining synthetic organic chemistry, structural biology, molecular modelling, bioorganic chemistry, natural products chemistry, biochemistry or analytical methods with pharmaceutical or medicinal aspects such as biological activity. The focus of this journal is put on original research papers, but other scientifically valuable contributions (e.g. reviews, minireviews, highlights, symposia contributions, discussions, and essays) are also welcome.