Low-cost and automated magnetic bead-based DNA data writing via digital microfluidics.

IF 6.1 2区 工程技术 Q1 BIOCHEMICAL RESEARCH METHODS Lab on a Chip Pub Date : 2025-03-12 DOI:10.1039/d5lc00106d
Mengdi Bao, Brett Herdendorf, Gemma Mendonsa, Sriram Chari, Anil Reddy
{"title":"Low-cost and automated magnetic bead-based DNA data writing <i>via</i> digital microfluidics.","authors":"Mengdi Bao, Brett Herdendorf, Gemma Mendonsa, Sriram Chari, Anil Reddy","doi":"10.1039/d5lc00106d","DOIUrl":null,"url":null,"abstract":"<p><p>The rapid growth in data generation presents a significant challenge for conventional storage technologies. DNA storage has emerged as a promising solution, offering substantially greater storage density and durability. However, the current DNA data writing process is costly and labor-intensive, hindering the commercialization of DNA data storage. In this study, we present a digital microfluidics (DMF) platform integrated with E47 DNAzyme ligation chemistry to develop a programmable, cost-effective, and automated DNA data writing process. Our method utilizes pre-synthesized single-stranded DNA as building blocks, which can be assembled into diverse DNA sequences that encode desired data. By employing DNAzymes as biocatalysts, we enable an enzyme-free ligation process at room temperature, significantly reducing costs compared to traditional enzyme-based methods. Our proof-of-concept demonstrates an automated DNA writing process with the reduced reagent input, providing an alternative solution to the high costs associated with current DNA data storage methods. The high specificity of ligation using DNAzymes obviates the need for storing each unique DNA block in its own reservoir, which greatly reduces the total number of reservoirs required to store the starting material. This simplifies the overall layout, and the associated plumbing of the DMF platform. To adapt the conventional column-purification required ligation on the DMF platform, we introduce a DNAzyme-cleavage-assisted bead purification assay. This method employs 17E DNAzymes to cleave and release biotinylated DNA from streptavidin beads, followed by a one-pot ligation with E47 DNAzymes to assemble the desired DNA strands. Our study represents a significant advancement in DNA data storage technology, offering a cost-effective and automated solution that enhances scalability and practicality for commercial DNA data storage applications.</p>","PeriodicalId":85,"journal":{"name":"Lab on a Chip","volume":" ","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lab on a Chip","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1039/d5lc00106d","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid growth in data generation presents a significant challenge for conventional storage technologies. DNA storage has emerged as a promising solution, offering substantially greater storage density and durability. However, the current DNA data writing process is costly and labor-intensive, hindering the commercialization of DNA data storage. In this study, we present a digital microfluidics (DMF) platform integrated with E47 DNAzyme ligation chemistry to develop a programmable, cost-effective, and automated DNA data writing process. Our method utilizes pre-synthesized single-stranded DNA as building blocks, which can be assembled into diverse DNA sequences that encode desired data. By employing DNAzymes as biocatalysts, we enable an enzyme-free ligation process at room temperature, significantly reducing costs compared to traditional enzyme-based methods. Our proof-of-concept demonstrates an automated DNA writing process with the reduced reagent input, providing an alternative solution to the high costs associated with current DNA data storage methods. The high specificity of ligation using DNAzymes obviates the need for storing each unique DNA block in its own reservoir, which greatly reduces the total number of reservoirs required to store the starting material. This simplifies the overall layout, and the associated plumbing of the DMF platform. To adapt the conventional column-purification required ligation on the DMF platform, we introduce a DNAzyme-cleavage-assisted bead purification assay. This method employs 17E DNAzymes to cleave and release biotinylated DNA from streptavidin beads, followed by a one-pot ligation with E47 DNAzymes to assemble the desired DNA strands. Our study represents a significant advancement in DNA data storage technology, offering a cost-effective and automated solution that enhances scalability and practicality for commercial DNA data storage applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Lab on a Chip
Lab on a Chip 工程技术-化学综合
CiteScore
11.10
自引率
8.20%
发文量
434
审稿时长
2.6 months
期刊介绍: Lab on a Chip is the premiere journal that publishes cutting-edge research in the field of miniaturization. By their very nature, microfluidic/nanofluidic/miniaturized systems are at the intersection of disciplines, spanning fundamental research to high-end application, which is reflected by the broad readership of the journal. Lab on a Chip publishes two types of papers on original research: full-length research papers and communications. Papers should demonstrate innovations, which can come from technical advancements or applications addressing pressing needs in globally important areas. The journal also publishes Comments, Reviews, and Perspectives.
期刊最新文献
Low-cost and automated magnetic bead-based DNA data writing via digital microfluidics. Mechanical forces and enzymatic digestion act together to induce the remodeling of collagen fibrils in tumor microenvironment. MechanoBioCAD: a generalized semi-automated computational tool for mechanobiological studies. Microvalve-based gradient generators to control flow-free, time zero and long-term conditions. Inside back cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1