The Mechanisms and Therapeutic Implications of PI3K Signaling in Airway Inflammation and Remodeling in Asthma.

IF 5.3 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Biologics : Targets & Therapy Pub Date : 2025-03-07 eCollection Date: 2025-01-01 DOI:10.2147/BTT.S497622
Bangguo Song, Jihong Hu, Shupeng Chen, Yang Zhang
{"title":"The Mechanisms and Therapeutic Implications of PI3K Signaling in Airway Inflammation and Remodeling in Asthma.","authors":"Bangguo Song, Jihong Hu, Shupeng Chen, Yang Zhang","doi":"10.2147/BTT.S497622","DOIUrl":null,"url":null,"abstract":"<p><p>Bronchial asthma is a complex and heterogeneous disease with ongoing airway inflammation and increased airway responsiveness. Key characteristics of the disease include persistent airway inflammation, airway hyperresponsiveness, and airway remodeling. Asthma's chronic and recurrent characteristics contribute to airway remodeling and inflammation, which can exacerbate lung damage. Presently, inflammation is predominantly managed with corticosteroids, yet there is a notable absence of treatments specifically addressing airway remodeling. The phosphoinositide 3-kinase (PI3K) signaling pathway is integral to the processes of inflammation, airway remodeling, and immune responses. Pharmacological agents targeting this pathway are currently undergoing clinical evaluation. This review elucidates the role of PI3K in the immune responses, airway inflammation, and remodeling associated with asthma, examining its underlying mechanisms. Furthermore, we synthesize the existing literature on the therapeutic potential of PI3K inhibitors for asthma management, emphasizing immune modulation, airway inflammation, and remodeling, including drug development and ongoing clinical trials. Lastly, we explore how various PI3K-targeted therapies may enhance efficacy and improve tolerance.</p>","PeriodicalId":9025,"journal":{"name":"Biologics : Targets & Therapy","volume":"19 ","pages":"73-86"},"PeriodicalIF":5.3000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11895685/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biologics : Targets & Therapy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2147/BTT.S497622","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Bronchial asthma is a complex and heterogeneous disease with ongoing airway inflammation and increased airway responsiveness. Key characteristics of the disease include persistent airway inflammation, airway hyperresponsiveness, and airway remodeling. Asthma's chronic and recurrent characteristics contribute to airway remodeling and inflammation, which can exacerbate lung damage. Presently, inflammation is predominantly managed with corticosteroids, yet there is a notable absence of treatments specifically addressing airway remodeling. The phosphoinositide 3-kinase (PI3K) signaling pathway is integral to the processes of inflammation, airway remodeling, and immune responses. Pharmacological agents targeting this pathway are currently undergoing clinical evaluation. This review elucidates the role of PI3K in the immune responses, airway inflammation, and remodeling associated with asthma, examining its underlying mechanisms. Furthermore, we synthesize the existing literature on the therapeutic potential of PI3K inhibitors for asthma management, emphasizing immune modulation, airway inflammation, and remodeling, including drug development and ongoing clinical trials. Lastly, we explore how various PI3K-targeted therapies may enhance efficacy and improve tolerance.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biologics : Targets & Therapy
Biologics : Targets & Therapy MEDICINE, RESEARCH & EXPERIMENTAL-
CiteScore
8.30
自引率
0.00%
发文量
22
审稿时长
16 weeks
期刊最新文献
Escalation and De-Escalation Strategies for Endocrine Therapy in Early-Stage Breast Cancer. Circulating PGC-1α and MOTS-c Peptide as Potential Mitochondrial Biomarkers in Patients Undergoing Aortic Valve Replacement. The Mechanisms and Therapeutic Implications of PI3K Signaling in Airway Inflammation and Remodeling in Asthma. Dual Anti-HER2 Therapy Vs Trastuzumab Alone with Neoadjuvant Anthracycline and Taxane in HER2-Positive Early-Stage Breast Cancer: Real-World Insights. Unraveling Tumor-to-Tumor Metastasis: Insights into Pathogenesis, Diagnostic Challenges, and Treatment Modalities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1