A bacteria-based bioorthogonal platform disrupts the flexible lipid homeostasis for potent metabolic therapy†

IF 7.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Chemical Science Pub Date : 2025-02-28 DOI:10.1039/D4SC06481J
Jiadai Yi, Huan Wang, Qingqing Deng, Congcong Huang, Lu Zhang, Mengyu Sun, Jinsong Ren and Xiaogang Qu
{"title":"A bacteria-based bioorthogonal platform disrupts the flexible lipid homeostasis for potent metabolic therapy†","authors":"Jiadai Yi, Huan Wang, Qingqing Deng, Congcong Huang, Lu Zhang, Mengyu Sun, Jinsong Ren and Xiaogang Qu","doi":"10.1039/D4SC06481J","DOIUrl":null,"url":null,"abstract":"<p >Cancer cells exhibit altered metabolism and energetics, prominently reprogramming lipid metabolism to support tumor growth and progression, making it a promising target for cancer therapy. However, traditional genetic and pharmaceutical approaches for disrupting lipid metabolism face challenges due to the adaptability of tumor metabolism and potential side effects on normal tissues. Here, we present a bacteria-based bioorthogonal platform combining transition metal catalysts and <em>Lactobacillus</em> to disrupt the flexible lipid homeostasis in tumors. This platform activates glutamine transporter inhibitors <em>in situ</em>, targeting lipid synthesis in hypoxic tumor environments, while <em>Lactobacillus</em> inhibits lipid accumulation. By disrupting lipid metabolism and glutamine utilization, the present study proposes a safe and potent strategy for cancer therapy, with potential applications for other metabolic diseases.</p>","PeriodicalId":9909,"journal":{"name":"Chemical Science","volume":" 14","pages":" 6014-6022"},"PeriodicalIF":7.4000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11891781/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Science","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/sc/d4sc06481j","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Cancer cells exhibit altered metabolism and energetics, prominently reprogramming lipid metabolism to support tumor growth and progression, making it a promising target for cancer therapy. However, traditional genetic and pharmaceutical approaches for disrupting lipid metabolism face challenges due to the adaptability of tumor metabolism and potential side effects on normal tissues. Here, we present a bacteria-based bioorthogonal platform combining transition metal catalysts and Lactobacillus to disrupt the flexible lipid homeostasis in tumors. This platform activates glutamine transporter inhibitors in situ, targeting lipid synthesis in hypoxic tumor environments, while Lactobacillus inhibits lipid accumulation. By disrupting lipid metabolism and glutamine utilization, the present study proposes a safe and potent strategy for cancer therapy, with potential applications for other metabolic diseases.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
细菌为基础的生物正交平台破坏灵活的脂质稳态有效的代谢治疗。
癌细胞表现出代谢和能量学的改变,显著地重编程脂质代谢以支持肿瘤的生长和进展,使其成为癌症治疗的一个有希望的靶点。然而,由于肿瘤代谢的适应性和对正常组织的潜在副作用,传统的遗传和药物破坏脂质代谢的方法面临挑战。在这里,我们提出了一个基于细菌的生物正交平台,结合过渡金属催化剂和乳酸菌来破坏肿瘤中灵活的脂质稳态。该平台原位激活谷氨酰胺转运蛋白抑制剂,靶向低氧肿瘤环境中的脂质合成,而乳酸杆菌抑制脂质积累。通过破坏脂质代谢和谷氨酰胺利用,本研究提出了一种安全有效的癌症治疗策略,并有可能应用于其他代谢疾病。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemical Science
Chemical Science CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
14.40
自引率
4.80%
发文量
1352
审稿时长
2.1 months
期刊介绍: Chemical Science is a journal that encompasses various disciplines within the chemical sciences. Its scope includes publishing ground-breaking research with significant implications for its respective field, as well as appealing to a wider audience in related areas. To be considered for publication, articles must showcase innovative and original advances in their field of study and be presented in a manner that is understandable to scientists from diverse backgrounds. However, the journal generally does not publish highly specialized research.
期刊最新文献
Pd-Cu Dual Sites Turning H Adsorption for Efficient Electrocatalytic Hydrogenation of HMF A reflection on recent advances in organometallic copper(III) chemistry Visible Light-Induced 1,2-Alkoxy Shift of α-Diazoacetates for Wolff Rearrangements – Access to Oxyketenes Reply to the ‘Comment on “Mapping photoisomerization dynamics on a three-state model potential energy surface in bacteriorhodopsin using femtosecond stimulated Raman spectroscopy”’ by I. Schapiro, M. Olivucci, K. Heyne and S. Haacke, Chem. Sci., 2025, 16, DOI: 10.1039/D5SC05038C Chemically Modified DNA Aptamers and DNAzymes for Expanded Functional Capabilities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1