{"title":"Automated Insulin Delivery in Pregnancies Complicated by Type 1 Diabetes.","authors":"Katrien Benhalima, Sarit Polsky","doi":"10.1177/19322968251323614","DOIUrl":null,"url":null,"abstract":"<p><p>Automated insulin delivery (AID) systems adapt insulin delivery via a predictive algorithm integrated with continuous glucose monitoring and an insulin pump. Automated insulin delivery has become standard of care for glycemic management of people with type 1 diabetes (T1D) outside pregnancy, leading to improvements in time in range, with lower risk for hypoglycemia and improved treatment satisfaction. The use of AID facilitates optimal preconception care, thus more women of reproductive age are becoming pregnant while using AID. The effectiveness and safety in pregnant populations of using AID systems with algorithms for non-pregnant populations may be impacted by requirements for lower glucose targets and existence of increased insulin resistance during gestation. The CamAPS FX is the only AID system approved for use in pregnancy. A large randomized controlled trial (RCT) with this AID system demonstrated a 10.5% increase in time in pregnancy range (an additional 2.5 hours/day) compared with standard insulin therapy in pregnant women with T1D with a baseline glycated hemoglobin A1c (HbA<sub>1c</sub>) ≥48 mmol/mol (6.5%). A RCT of AID not approved for use in pregnancy (MiniMed 780G) has also demonstrated some benefits of AID compared with standard insulin therapy with improved time in pregnancy range overnight (24 minutes), less hypoglycemia, and improved treatment satisfaction. There is also increasing evidence that AID can be safely continued during delivery and postpartum, while maintaining glycemic goals with lower risk for hypoglycemia. More AID systems are needed with flexible glucose targets in the pregnancy range and possibly with algorithms that better adapt to changing insulin requirements. More evidence is needed on the impact of AID on maternal and neonatal outcomes. We review the current evidence on the use of AID in pregnancy and postpartum.</p>","PeriodicalId":15475,"journal":{"name":"Journal of Diabetes Science and Technology","volume":" ","pages":"19322968251323614"},"PeriodicalIF":4.1000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11904923/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Diabetes Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/19322968251323614","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Automated insulin delivery (AID) systems adapt insulin delivery via a predictive algorithm integrated with continuous glucose monitoring and an insulin pump. Automated insulin delivery has become standard of care for glycemic management of people with type 1 diabetes (T1D) outside pregnancy, leading to improvements in time in range, with lower risk for hypoglycemia and improved treatment satisfaction. The use of AID facilitates optimal preconception care, thus more women of reproductive age are becoming pregnant while using AID. The effectiveness and safety in pregnant populations of using AID systems with algorithms for non-pregnant populations may be impacted by requirements for lower glucose targets and existence of increased insulin resistance during gestation. The CamAPS FX is the only AID system approved for use in pregnancy. A large randomized controlled trial (RCT) with this AID system demonstrated a 10.5% increase in time in pregnancy range (an additional 2.5 hours/day) compared with standard insulin therapy in pregnant women with T1D with a baseline glycated hemoglobin A1c (HbA1c) ≥48 mmol/mol (6.5%). A RCT of AID not approved for use in pregnancy (MiniMed 780G) has also demonstrated some benefits of AID compared with standard insulin therapy with improved time in pregnancy range overnight (24 minutes), less hypoglycemia, and improved treatment satisfaction. There is also increasing evidence that AID can be safely continued during delivery and postpartum, while maintaining glycemic goals with lower risk for hypoglycemia. More AID systems are needed with flexible glucose targets in the pregnancy range and possibly with algorithms that better adapt to changing insulin requirements. More evidence is needed on the impact of AID on maternal and neonatal outcomes. We review the current evidence on the use of AID in pregnancy and postpartum.
期刊介绍:
The Journal of Diabetes Science and Technology (JDST) is a bi-monthly, peer-reviewed scientific journal published by the Diabetes Technology Society. JDST covers scientific and clinical aspects of diabetes technology including glucose monitoring, insulin and metabolic peptide delivery, the artificial pancreas, digital health, precision medicine, social media, cybersecurity, software for modeling, physiologic monitoring, technology for managing obesity, and diagnostic tests of glycation. The journal also covers the development and use of mobile applications and wireless communication, as well as bioengineered tools such as MEMS, new biomaterials, and nanotechnology to develop new sensors. Articles in JDST cover both basic research and clinical applications of technologies being developed to help people with diabetes.