Microstructural and functional abnormalities of the locus coeruleus in freezing of gait in Parkinson's disease

IF 5.1 2区 医学 Q1 NEUROSCIENCES Neurobiology of Disease Pub Date : 2025-03-09 DOI:10.1016/j.nbd.2025.106868
Huimin Sun , Caiting Gan , Xingyue Cao , Yongsheng Yuan , Heng Zhang , Chenhui Wan , Jiaxin Shi , Xufeng Wang , Youyong Kong , Tao Feng , Kezhong Zhang
{"title":"Microstructural and functional abnormalities of the locus coeruleus in freezing of gait in Parkinson's disease","authors":"Huimin Sun ,&nbsp;Caiting Gan ,&nbsp;Xingyue Cao ,&nbsp;Yongsheng Yuan ,&nbsp;Heng Zhang ,&nbsp;Chenhui Wan ,&nbsp;Jiaxin Shi ,&nbsp;Xufeng Wang ,&nbsp;Youyong Kong ,&nbsp;Tao Feng ,&nbsp;Kezhong Zhang","doi":"10.1016/j.nbd.2025.106868","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>The loss of locus coeruleus (LC)-norepinephrine system may contribute to freezing of gait (FOG) in Parkinson's disease (PD), but free-water (FW) imaging has not been applied to investigate LC microstructural degeneration in FOG. This study was to investigate the role of the LC-norepinephrine system in FOG pathophysiology using FW imaging and resting-state functional magnetic resonance imaging.</div></div><div><h3>Methods</h3><div>FW metrics of LC were analyzed in 52 healthy controls, 79 PD patients without FOG (Non-FOG), and 110 PD patients with FOG (48 “Off-period” FOG and 62 “Levodopa unresponsive” FOG). Correlation between LC FW metrics and clinical scales were assessed. Functional connectivity analysis with LC as the region of interest was performed across groups during medication withdrawal. Structural and functional differences in LC between FOG subgroups and the effects of dopaminergic medication were also explored.</div></div><div><h3>Results</h3><div>FOG patients had increased FW value, FW-corrected mean diffusivity, axial diffusivity, and radial diffusivity in LC, and decreased FW-corrected fractional anisotropy compared to Non-FOG patients and healthy controls. In FOG patients, FW value and FW-corrected mean axial diffusivity were positively correlated with the new FOG questionnaire scores. LC functional connectivity with occipital regions was reduced in FOG patients. No significant differences in LC microstructure or functional connectivity were observed between FOG subgroups during their “OFF” state. In contrast to “Levodopa-unresponsive” FOG patients, oral medication significantly improved LC functional connectivity with occipital regions in “Off-period” FOG patients.</div></div><div><h3>Conclusions</h3><div>LC degeneration may disrupt motor and compensatory network integration, especially in visual-motor pathways, contributing to FOG.</div></div>","PeriodicalId":19097,"journal":{"name":"Neurobiology of Disease","volume":"208 ","pages":"Article 106868"},"PeriodicalIF":5.1000,"publicationDate":"2025-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurobiology of Disease","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0969996125000841","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Objective

The loss of locus coeruleus (LC)-norepinephrine system may contribute to freezing of gait (FOG) in Parkinson's disease (PD), but free-water (FW) imaging has not been applied to investigate LC microstructural degeneration in FOG. This study was to investigate the role of the LC-norepinephrine system in FOG pathophysiology using FW imaging and resting-state functional magnetic resonance imaging.

Methods

FW metrics of LC were analyzed in 52 healthy controls, 79 PD patients without FOG (Non-FOG), and 110 PD patients with FOG (48 “Off-period” FOG and 62 “Levodopa unresponsive” FOG). Correlation between LC FW metrics and clinical scales were assessed. Functional connectivity analysis with LC as the region of interest was performed across groups during medication withdrawal. Structural and functional differences in LC between FOG subgroups and the effects of dopaminergic medication were also explored.

Results

FOG patients had increased FW value, FW-corrected mean diffusivity, axial diffusivity, and radial diffusivity in LC, and decreased FW-corrected fractional anisotropy compared to Non-FOG patients and healthy controls. In FOG patients, FW value and FW-corrected mean axial diffusivity were positively correlated with the new FOG questionnaire scores. LC functional connectivity with occipital regions was reduced in FOG patients. No significant differences in LC microstructure or functional connectivity were observed between FOG subgroups during their “OFF” state. In contrast to “Levodopa-unresponsive” FOG patients, oral medication significantly improved LC functional connectivity with occipital regions in “Off-period” FOG patients.

Conclusions

LC degeneration may disrupt motor and compensatory network integration, especially in visual-motor pathways, contributing to FOG.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Neurobiology of Disease
Neurobiology of Disease 医学-神经科学
CiteScore
11.20
自引率
3.30%
发文量
270
审稿时长
76 days
期刊介绍: Neurobiology of Disease is a major international journal at the interface between basic and clinical neuroscience. The journal provides a forum for the publication of top quality research papers on: molecular and cellular definitions of disease mechanisms, the neural systems and underpinning behavioral disorders, the genetics of inherited neurological and psychiatric diseases, nervous system aging, and findings relevant to the development of new therapies.
期刊最新文献
Editorial Board Developmental alterations of indirect-pathway medium spiny neurons in mouse models of Huntington's disease. Early detection of Parkinson's disease: Retinal functional impairments as potential biomarkers. Single-cell and spatial transcriptomics analysis reveals that Pros1+ oligodendrocytes are involved in endogenous neuroprotection after brainstem stroke. SARM1 deletion inhibits astrogliosis and BBB damage through Jagged-1/Notch-1/NF-κB signaling to improve neurological function after ischemic stroke
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1