Yuksel Akinay, Erkan Karatas, Damla Ruzgar, Ali Akbari, Dilges Baskin, Tayfun Cetin, Hilal Celik Kazici, Mehmet Topuz
{"title":"Cytotoxicity and antibacterial activity of polyhedral oligomeric silsesquioxane modified Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene films.","authors":"Yuksel Akinay, Erkan Karatas, Damla Ruzgar, Ali Akbari, Dilges Baskin, Tayfun Cetin, Hilal Celik Kazici, Mehmet Topuz","doi":"10.1038/s41598-025-92498-4","DOIUrl":null,"url":null,"abstract":"<p><p>Bioactive antimicrobial films play important roles in various fields, such as biodegradable interfaces, tissue regeneration, and biomedical applications where preventing infection, biocompatibility, and immune rejection are important. In the present study, bioactive POSS-doped Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene filled PLA composite film was prepared using the solution casting method for biomedical applications. The contact angle tests were investigated to reveal the usability of the thin films in biomedical applications. The angle decreased from 85.92° degrees in pure PLA thin films to 72.23° on POSS-doped Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene films. The antibacterial performance, cytotoxicity and cell viability assessments of the prepared films have also been thoroughly investigated. Antibacterial tests revealed that the POSS-doped Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene films effectively inhibited the growth of E. coli and S. aureus by 65.93% and 80.63%, respectively, within 4 h. These inhibition rates were observed as 58.32% and 54.97% for E. coli and S. aureus, respectively, after 24 h. Cytotoxicity assessments demonstrated that PMPs consistently showed higher cell viability due to the combination of POSS and Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene. The obtained results suggest that the POSS-doped Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene film is a promising candidate in cases where bacterial inhibition and high biocompatibility are of critical importance.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"8463"},"PeriodicalIF":3.8000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-92498-4","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Bioactive antimicrobial films play important roles in various fields, such as biodegradable interfaces, tissue regeneration, and biomedical applications where preventing infection, biocompatibility, and immune rejection are important. In the present study, bioactive POSS-doped Ti3C2Tx MXene filled PLA composite film was prepared using the solution casting method for biomedical applications. The contact angle tests were investigated to reveal the usability of the thin films in biomedical applications. The angle decreased from 85.92° degrees in pure PLA thin films to 72.23° on POSS-doped Ti3C2Tx MXene films. The antibacterial performance, cytotoxicity and cell viability assessments of the prepared films have also been thoroughly investigated. Antibacterial tests revealed that the POSS-doped Ti3C2Tx MXene films effectively inhibited the growth of E. coli and S. aureus by 65.93% and 80.63%, respectively, within 4 h. These inhibition rates were observed as 58.32% and 54.97% for E. coli and S. aureus, respectively, after 24 h. Cytotoxicity assessments demonstrated that PMPs consistently showed higher cell viability due to the combination of POSS and Ti3C2Tx MXene. The obtained results suggest that the POSS-doped Ti3C2Tx MXene film is a promising candidate in cases where bacterial inhibition and high biocompatibility are of critical importance.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.