Cytotoxicity and antibacterial activity of polyhedral oligomeric silsesquioxane modified Ti3C2Tx MXene films.

IF 3.8 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Scientific Reports Pub Date : 2025-03-12 DOI:10.1038/s41598-025-92498-4
Yuksel Akinay, Erkan Karatas, Damla Ruzgar, Ali Akbari, Dilges Baskin, Tayfun Cetin, Hilal Celik Kazici, Mehmet Topuz
{"title":"Cytotoxicity and antibacterial activity of polyhedral oligomeric silsesquioxane modified Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene films.","authors":"Yuksel Akinay, Erkan Karatas, Damla Ruzgar, Ali Akbari, Dilges Baskin, Tayfun Cetin, Hilal Celik Kazici, Mehmet Topuz","doi":"10.1038/s41598-025-92498-4","DOIUrl":null,"url":null,"abstract":"<p><p>Bioactive antimicrobial films play important roles in various fields, such as biodegradable interfaces, tissue regeneration, and biomedical applications where preventing infection, biocompatibility, and immune rejection are important. In the present study, bioactive POSS-doped Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene filled PLA composite film was prepared using the solution casting method for biomedical applications. The contact angle tests were investigated to reveal the usability of the thin films in biomedical applications. The angle decreased from 85.92° degrees in pure PLA thin films to 72.23° on POSS-doped Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene films. The antibacterial performance, cytotoxicity and cell viability assessments of the prepared films have also been thoroughly investigated. Antibacterial tests revealed that the POSS-doped Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene films effectively inhibited the growth of E. coli and S. aureus by 65.93% and 80.63%, respectively, within 4 h. These inhibition rates were observed as 58.32% and 54.97% for E. coli and S. aureus, respectively, after 24 h. Cytotoxicity assessments demonstrated that PMPs consistently showed higher cell viability due to the combination of POSS and Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene. The obtained results suggest that the POSS-doped Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene film is a promising candidate in cases where bacterial inhibition and high biocompatibility are of critical importance.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"8463"},"PeriodicalIF":3.8000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-92498-4","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Bioactive antimicrobial films play important roles in various fields, such as biodegradable interfaces, tissue regeneration, and biomedical applications where preventing infection, biocompatibility, and immune rejection are important. In the present study, bioactive POSS-doped Ti3C2Tx MXene filled PLA composite film was prepared using the solution casting method for biomedical applications. The contact angle tests were investigated to reveal the usability of the thin films in biomedical applications. The angle decreased from 85.92° degrees in pure PLA thin films to 72.23° on POSS-doped Ti3C2Tx MXene films. The antibacterial performance, cytotoxicity and cell viability assessments of the prepared films have also been thoroughly investigated. Antibacterial tests revealed that the POSS-doped Ti3C2Tx MXene films effectively inhibited the growth of E. coli and S. aureus by 65.93% and 80.63%, respectively, within 4 h. These inhibition rates were observed as 58.32% and 54.97% for E. coli and S. aureus, respectively, after 24 h. Cytotoxicity assessments demonstrated that PMPs consistently showed higher cell viability due to the combination of POSS and Ti3C2Tx MXene. The obtained results suggest that the POSS-doped Ti3C2Tx MXene film is a promising candidate in cases where bacterial inhibition and high biocompatibility are of critical importance.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Scientific Reports
Scientific Reports Natural Science Disciplines-
CiteScore
7.50
自引率
4.30%
发文量
19567
审稿时长
3.9 months
期刊介绍: We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections. Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021). •Engineering Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live. •Physical sciences Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics. •Earth and environmental sciences Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems. •Biological sciences Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants. •Health sciences The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.
期刊最新文献
Phytotoxic effects of petroleum hydrocarbons on germination and growth of the native halophyte Salicornia sinus persica in oil contaminated soil. Physicochemical properties and heavy metals characteristics of building ceramsites with oil-based drilling cutting residues. A universal equation-of-state model based on single variable functions. Schisandrin B targets CDK4/6 to suppress proliferation and enhance radiosensitivity in nasopharyngeal carcinoma by inducing cell cycle arrest. Identification and validation of hub genes associated with biotic and abiotic stresses by modular gene co-expression analysis in Oryza sativa L.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1