Hanna Pankka, Jaakko Lehtinen, Risto J Ilmoniemi, Timo Roine
{"title":"Enhanced EEG Forecasting: A Probabilistic Deep Learning Approach.","authors":"Hanna Pankka, Jaakko Lehtinen, Risto J Ilmoniemi, Timo Roine","doi":"10.1162/neco_a_01743","DOIUrl":null,"url":null,"abstract":"<p><p>Forecasting electroencephalography (EEG) signals, that is, estimating future values of the time series based on the past ones, is essential in many real-time EEG-based applications, such as brain-computer interfaces and closed-loop brain stimulation. As these applications are becoming more and more common, the importance of a good prediction model has increased. Previously, the autoregressive model (AR) has been employed for this task; however, its prediction accuracy tends to fade quickly as multiple steps are predicted. We aim to improve on this by applying probabilistic deep learning to make robust longer-range forecasts. For this, we applied the probabilistic deep neural network model WaveNet to forecast resting-state EEG in theta- (4-7.5 Hz) and alpha-frequency (8-13 Hz) bands and compared it to the AR model. WaveNet reliably predicted EEG signals in both theta and alpha frequencies 150 ms ahead, with mean absolute errors of 1.0 ± 1.1 µV (theta) and 0.9 ± 1.1 µV (alpha), and outperformed the AR model in estimating the signal amplitude and phase. Furthermore, we found that the probabilistic approach offers a way of forecasting even more accurately while effectively discarding uncertain predictions. We demonstrate for the first time that probabilistic deep learning can be used to forecast resting-state EEG time series. In the future, the developed model can enhance the real-time estimation of brain states in brain-computer interfaces and brain stimulation protocols. It may also be useful for answering neuroscientific questions and for diagnostic purposes.</p>","PeriodicalId":54731,"journal":{"name":"Neural Computation","volume":" ","pages":"793-814"},"PeriodicalIF":2.7000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Computation","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1162/neco_a_01743","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Forecasting electroencephalography (EEG) signals, that is, estimating future values of the time series based on the past ones, is essential in many real-time EEG-based applications, such as brain-computer interfaces and closed-loop brain stimulation. As these applications are becoming more and more common, the importance of a good prediction model has increased. Previously, the autoregressive model (AR) has been employed for this task; however, its prediction accuracy tends to fade quickly as multiple steps are predicted. We aim to improve on this by applying probabilistic deep learning to make robust longer-range forecasts. For this, we applied the probabilistic deep neural network model WaveNet to forecast resting-state EEG in theta- (4-7.5 Hz) and alpha-frequency (8-13 Hz) bands and compared it to the AR model. WaveNet reliably predicted EEG signals in both theta and alpha frequencies 150 ms ahead, with mean absolute errors of 1.0 ± 1.1 µV (theta) and 0.9 ± 1.1 µV (alpha), and outperformed the AR model in estimating the signal amplitude and phase. Furthermore, we found that the probabilistic approach offers a way of forecasting even more accurately while effectively discarding uncertain predictions. We demonstrate for the first time that probabilistic deep learning can be used to forecast resting-state EEG time series. In the future, the developed model can enhance the real-time estimation of brain states in brain-computer interfaces and brain stimulation protocols. It may also be useful for answering neuroscientific questions and for diagnostic purposes.
期刊介绍:
Neural Computation is uniquely positioned at the crossroads between neuroscience and TMCS and welcomes the submission of original papers from all areas of TMCS, including: Advanced experimental design; Analysis of chemical sensor data; Connectomic reconstructions; Analysis of multielectrode and optical recordings; Genetic data for cell identity; Analysis of behavioral data; Multiscale models; Analysis of molecular mechanisms; Neuroinformatics; Analysis of brain imaging data; Neuromorphic engineering; Principles of neural coding, computation, circuit dynamics, and plasticity; Theories of brain function.