Raffaele Marino, Lorenzo Buffoni, Lorenzo Chicchi, Francesca Di Patti, Diego Febbe, Lorenzo Giambagli, Duccio Fanelli
{"title":"Learning in Wilson-Cowan Model for Metapopulation.","authors":"Raffaele Marino, Lorenzo Buffoni, Lorenzo Chicchi, Francesca Di Patti, Diego Febbe, Lorenzo Giambagli, Duccio Fanelli","doi":"10.1162/neco_a_01744","DOIUrl":null,"url":null,"abstract":"<p><p>The Wilson-Cowan model for metapopulation, a neural mass network model, treats different subcortical regions of the brain as connected nodes, with connections representing various types of structural, functional, or effective neuronal connectivity between these regions. Each region comprises interacting populations of excitatory and inhibitory cells, consistent with the standard Wilson-Cowan model. In this article, we show how to incorporate stable attractors into such a metapopulation model's dynamics. By doing so, we transform the neural mass network model into a biologically inspired learning algorithm capable of solving different classification tasks. We test it on MNIST and Fashion MNIST in combination with convolutional neural networks, as well as on CIFAR-10 and TF-FLOWERS, and in combination with a transformer architecture (BERT) on IMDB, consistently achieving high classification accuracy.</p>","PeriodicalId":54731,"journal":{"name":"Neural Computation","volume":" ","pages":"701-741"},"PeriodicalIF":2.7000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Computation","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1162/neco_a_01744","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The Wilson-Cowan model for metapopulation, a neural mass network model, treats different subcortical regions of the brain as connected nodes, with connections representing various types of structural, functional, or effective neuronal connectivity between these regions. Each region comprises interacting populations of excitatory and inhibitory cells, consistent with the standard Wilson-Cowan model. In this article, we show how to incorporate stable attractors into such a metapopulation model's dynamics. By doing so, we transform the neural mass network model into a biologically inspired learning algorithm capable of solving different classification tasks. We test it on MNIST and Fashion MNIST in combination with convolutional neural networks, as well as on CIFAR-10 and TF-FLOWERS, and in combination with a transformer architecture (BERT) on IMDB, consistently achieving high classification accuracy.
期刊介绍:
Neural Computation is uniquely positioned at the crossroads between neuroscience and TMCS and welcomes the submission of original papers from all areas of TMCS, including: Advanced experimental design; Analysis of chemical sensor data; Connectomic reconstructions; Analysis of multielectrode and optical recordings; Genetic data for cell identity; Analysis of behavioral data; Multiscale models; Analysis of molecular mechanisms; Neuroinformatics; Analysis of brain imaging data; Neuromorphic engineering; Principles of neural coding, computation, circuit dynamics, and plasticity; Theories of brain function.