João Vitor Teodoro, Gerson Barreto Mourão, Rachel Santos Bueno Carvalho, Elisângela Chicaroni de Mattos, José Bento Sterman Ferraz, Joanir Pereira Eler
{"title":"Optimal Mating Combination for Directed Breeding in a Racially Composite Cattle Population.","authors":"João Vitor Teodoro, Gerson Barreto Mourão, Rachel Santos Bueno Carvalho, Elisângela Chicaroni de Mattos, José Bento Sterman Ferraz, Joanir Pereira Eler","doi":"10.1111/jbg.12936","DOIUrl":null,"url":null,"abstract":"<p><p>Evaluating optimal mating combinations in large populations poses significant combinatorial and computational challenges. To address this, we propose a method to optimise mating combinations in composite cattle populations, incorporating heterosis and genetic variability. Leveraging integer linear programming, our approach maximises expected offspring merit, outperforming random mating systems. A robust mathematical model and specialised software were developed to implement the method, demonstrating its effectiveness on a real dataset. Notably, results reveal a 14.8% superiority over random mating averages and a 12.4% advantage over random mating maxima. The method's flexibility and adaptability enable constraint inclusion and application to diverse species and genomic data, making it an indispensable tool for enhancing mating selection efficiency and effectiveness in composite beef cattle breeding programmes.</p>","PeriodicalId":54885,"journal":{"name":"Journal of Animal Breeding and Genetics","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Animal Breeding and Genetics","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/jbg.12936","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Evaluating optimal mating combinations in large populations poses significant combinatorial and computational challenges. To address this, we propose a method to optimise mating combinations in composite cattle populations, incorporating heterosis and genetic variability. Leveraging integer linear programming, our approach maximises expected offspring merit, outperforming random mating systems. A robust mathematical model and specialised software were developed to implement the method, demonstrating its effectiveness on a real dataset. Notably, results reveal a 14.8% superiority over random mating averages and a 12.4% advantage over random mating maxima. The method's flexibility and adaptability enable constraint inclusion and application to diverse species and genomic data, making it an indispensable tool for enhancing mating selection efficiency and effectiveness in composite beef cattle breeding programmes.
期刊介绍:
The Journal of Animal Breeding and Genetics publishes original articles by international scientists on genomic selection, and any other topic related to breeding programmes, selection, quantitative genetic, genomics, diversity and evolution of domestic animals. Researchers, teachers, and the animal breeding industry will find the reports of interest. Book reviews appear in many issues.