ESIQA: Perceptual Quality Assessment of Vision-Pro-based Egocentric Spatial Images.

Xilei Zhu, Liu Yang, Huiyu Duan, Xiongkuo Min, Guangtao Zhai, Patrick Le Callet
{"title":"ESIQA: Perceptual Quality Assessment of Vision-Pro-based Egocentric Spatial Images.","authors":"Xilei Zhu, Liu Yang, Huiyu Duan, Xiongkuo Min, Guangtao Zhai, Patrick Le Callet","doi":"10.1109/TVCG.2025.3549174","DOIUrl":null,"url":null,"abstract":"<p><p>With the development of eXtended Reality (XR), photo capturing and display technology based on head-mounted displays (HMDs) have experienced significant advancements and gained considerable attention. Egocentric spatial images and videos are emerging as a compelling form of stereoscopic XR content. The assessment for the Quality of Experience (QoE) of XR content is important to ensure a high-quality viewing experience. Different from traditional 2D images, egocentric spatial images present challenges for perceptual quality assessment due to their special shooting, processing methods, and stereoscopic characteristics However, the corresponding image quality assessment (IQA) research for egocentric spatial images is still lacking. In this paper, we establish the Egocentric Spatial Images Quality Assessment Database (ESIQAD), the first IQA database dedicated for egocentric spatial images as far as we know. Our ESIQAD includes 500 egocentric spatial images and the corresponding mean opinion scores (MOSs) under three display modes, including 2D display, 3D-window display, and 3D-immersive display. Based on our ESIQAD, we propose a novel mamba2-based multi-stage feature fusion model, termed ESIQAnet, which predicts the perceptual quality of egocentric spatial images under the three display modes. Specifically, we first extract features from multiple visual state space duality (VSSD) blocks, then apply cross attention to fuse binocular view information and use transposed attention to further refine the features. The multi-stage features are finally concatenated and fed into a quality regression network to predict the quality score. Extensive experimental results demonstrate that the ESIQAnet outperforms 22 state-of-the-art IQA models on the ESIQAD under all three display modes. The database and code are available at https://github.com/IntMeGroup/ESIQA.</p>","PeriodicalId":94035,"journal":{"name":"IEEE transactions on visualization and computer graphics","volume":"PP ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on visualization and computer graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TVCG.2025.3549174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the development of eXtended Reality (XR), photo capturing and display technology based on head-mounted displays (HMDs) have experienced significant advancements and gained considerable attention. Egocentric spatial images and videos are emerging as a compelling form of stereoscopic XR content. The assessment for the Quality of Experience (QoE) of XR content is important to ensure a high-quality viewing experience. Different from traditional 2D images, egocentric spatial images present challenges for perceptual quality assessment due to their special shooting, processing methods, and stereoscopic characteristics However, the corresponding image quality assessment (IQA) research for egocentric spatial images is still lacking. In this paper, we establish the Egocentric Spatial Images Quality Assessment Database (ESIQAD), the first IQA database dedicated for egocentric spatial images as far as we know. Our ESIQAD includes 500 egocentric spatial images and the corresponding mean opinion scores (MOSs) under three display modes, including 2D display, 3D-window display, and 3D-immersive display. Based on our ESIQAD, we propose a novel mamba2-based multi-stage feature fusion model, termed ESIQAnet, which predicts the perceptual quality of egocentric spatial images under the three display modes. Specifically, we first extract features from multiple visual state space duality (VSSD) blocks, then apply cross attention to fuse binocular view information and use transposed attention to further refine the features. The multi-stage features are finally concatenated and fed into a quality regression network to predict the quality score. Extensive experimental results demonstrate that the ESIQAnet outperforms 22 state-of-the-art IQA models on the ESIQAD under all three display modes. The database and code are available at https://github.com/IntMeGroup/ESIQA.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MineVRA: Exploring the Role of Generative AI-Driven Content Development in XR Environments through a Context-Aware Approach. PantographHaptics: a Technique for Large-Surface Passive Haptic Interactions Using Pantograph Mechanisms. How Collaboration Context and Personality Traits Shape the Social Norms of Human-to-Avatar Identity Representation. Single-View 3D Hair Modeling with Clumping Optimization. The Impact of Navigation on Proxemics in an Immersive Virtual Environment with Conversational Agents.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1