Ether-free Poly(arylene methylimidazole) Membranes with High Performance for Vanadium Redox Flow Battery Applications

IF 4.7 2区 化学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Applied Polymer Materials Pub Date : 2025-03-05 DOI:10.1021/acsapm.4c03945
Meichen Zhang, Peiru Lv, Lele Wang, Jin Wang* and Jingshuai Yang*, 
{"title":"Ether-free Poly(arylene methylimidazole) Membranes with High Performance for Vanadium Redox Flow Battery Applications","authors":"Meichen Zhang,&nbsp;Peiru Lv,&nbsp;Lele Wang,&nbsp;Jin Wang* and Jingshuai Yang*,&nbsp;","doi":"10.1021/acsapm.4c03945","DOIUrl":null,"url":null,"abstract":"<p >Achieving superior ionic selectivity in membranes is vital for enhancing the performance of vanadium redox flow batteries (VRFBs). In this study, we synthesize a series of ether-free poly(arylene methylimidazole) copolymers (P(MeIm-<i>co</i>-<i>X</i>)) enriched with methylimidazole groups. These copolymers are prepared via a straightforward superacid-catalyzed polymerization of 1-methyl-2-imidazolecarboxaldehyde with five distinct aromatic monomers: biphenyl, fluorene, 1,2-diphenylethane, diphenyl sulfide, and <i>p</i>-terphenyl (used as a reference). Our objective is to investigate how variations in the polymer backbone’s chemical structure affect membrane properties relevant to VRFB applications. The incorporated basic methylimidazole groups facilitate ion transport through hydrogen bonding, while modifications in the aromatic monomer structures adjust the polymer microstructure to optimize area resistance and ionic selectivity. Among the synthesized membranes, the fluorene-based P(MeIm-<i>co</i>-Flu) exhibits the most outstanding performance, displaying excellent chemical stability, high tensile strength (22.4 MPa), and low area resistance (0.32 Ω cm<sup>2</sup>). When evaluated in VRFBs at a current density of 100 mA cm<sup>–2</sup>, the P(MeIm-<i>co</i>-Flu) membrane achieves an energy efficiency (EE) of 85.7%, surpassing that of Nafion 115 (76.5%). Additionally, this membrane demonstrates exceptional capacity retention over 570 cycles at 100 mA cm<sup>–2</sup>, maintaining Coulombic efficiencies above 99%, with energy efficiencies decreasing slightly from 85.4% to 80.9%. Therefore, this work presents a high-performance, easily synthesized, and cost-effective P(MeIm-<i>co</i>-Flu) membrane for potential application in VRFBs.</p>","PeriodicalId":7,"journal":{"name":"ACS Applied Polymer Materials","volume":"7 5","pages":"3164–3173 3164–3173"},"PeriodicalIF":4.7000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Polymer Materials","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsapm.4c03945","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Achieving superior ionic selectivity in membranes is vital for enhancing the performance of vanadium redox flow batteries (VRFBs). In this study, we synthesize a series of ether-free poly(arylene methylimidazole) copolymers (P(MeIm-co-X)) enriched with methylimidazole groups. These copolymers are prepared via a straightforward superacid-catalyzed polymerization of 1-methyl-2-imidazolecarboxaldehyde with five distinct aromatic monomers: biphenyl, fluorene, 1,2-diphenylethane, diphenyl sulfide, and p-terphenyl (used as a reference). Our objective is to investigate how variations in the polymer backbone’s chemical structure affect membrane properties relevant to VRFB applications. The incorporated basic methylimidazole groups facilitate ion transport through hydrogen bonding, while modifications in the aromatic monomer structures adjust the polymer microstructure to optimize area resistance and ionic selectivity. Among the synthesized membranes, the fluorene-based P(MeIm-co-Flu) exhibits the most outstanding performance, displaying excellent chemical stability, high tensile strength (22.4 MPa), and low area resistance (0.32 Ω cm2). When evaluated in VRFBs at a current density of 100 mA cm–2, the P(MeIm-co-Flu) membrane achieves an energy efficiency (EE) of 85.7%, surpassing that of Nafion 115 (76.5%). Additionally, this membrane demonstrates exceptional capacity retention over 570 cycles at 100 mA cm–2, maintaining Coulombic efficiencies above 99%, with energy efficiencies decreasing slightly from 85.4% to 80.9%. Therefore, this work presents a high-performance, easily synthesized, and cost-effective P(MeIm-co-Flu) membrane for potential application in VRFBs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于钒氧化还原液流电池的高性能无醚聚(芳烯甲基咪唑)膜
在膜中实现优异的离子选择性对于提高钒氧化还原液流电池(VRFB)的性能至关重要。在本研究中,我们合成了一系列富含甲基咪唑基团的无醚聚(芳基甲基咪唑)共聚物(P(MeIm-co-X))。这些共聚物是通过 1-甲基-2-咪唑甲醛与五种不同的芳香族单体(联苯、芴、1,2-二苯基乙烷、二苯基硫醚和对三联苯(用作参照物))直接进行超酸催化聚合制备的。我们的目标是研究聚合物骨架化学结构的变化如何影响与 VRFB 应用相关的膜特性。加入的碱性甲基咪唑基团可通过氢键促进离子传输,而芳香族单体结构的改变可调整聚合物的微观结构,从而优化面积电阻和离子选择性。在合成的膜中,以芴为基础的 P(MeIm-co-Flu)性能最为突出,具有出色的化学稳定性、高拉伸强度(22.4 兆帕)和低面积电阻(0.32 Ω cm2)。在电流密度为 100 mA cm-2 的 VRFB 中进行评估时,P(MeIm-co-Flu) 膜的能量效率 (EE) 达到 85.7%,超过了 Nafion 115(76.5%)。此外,在 100 mA cm-2 的条件下,这种膜在 570 个循环中显示出卓越的容量保持能力,库仑效率保持在 99% 以上,能量效率从 85.4% 略微下降到 80.9%。因此,这项研究提出了一种高性能、易合成、低成本的 P(MeIm-co-Flu)膜,有望应用于 VRFB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
6.00%
发文量
810
期刊介绍: ACS Applied Polymer Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics, and biology relevant to applications of polymers. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates fundamental knowledge in the areas of materials, engineering, physics, bioscience, polymer science and chemistry into important polymer applications. The journal is specifically interested in work that addresses relationships among structure, processing, morphology, chemistry, properties, and function as well as work that provide insights into mechanisms critical to the performance of the polymer for applications.
期刊最新文献
Issue Editorial Masthead Issue Publication Information Ion-Track Polycarbonate Membrane for Sustainable All-Day Passive Bilateral Thermal Management Mechanically Interlocked Polyimide@Cyclodextrin All-Organic Dielectric with Enhanced High-Temperature Capacitive Energy Storage Performance High-Temperature Photoinitiated RAFT Dispersion Polymerization: A Light-Mediated Approach for Controlled Synthesis of Well-Defined Polymeric Microspheres
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1