Noncytotoxic catalytic enzyme functional mimics including cyanide poisoning antidotes

IF 6.9 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Current Opinion in Chemical Biology Pub Date : 2025-03-12 DOI:10.1016/j.cbpa.2025.102584
Sigridur G. Suman
{"title":"Noncytotoxic catalytic enzyme functional mimics including cyanide poisoning antidotes","authors":"Sigridur G. Suman","doi":"10.1016/j.cbpa.2025.102584","DOIUrl":null,"url":null,"abstract":"<div><div>Functional mimics of enzymes have a long history with bioinorganic chemists. Early motivation for creating these mimics was strongly based on the study of the enzyme reaction mechanisms. In more recent times, interest in functional mimics has expanded to catalytic metallodrugs, where the mimics are deliberately designed for specific catalytic reactions intended for therapeutic purposes. <em>In vivo,</em> noncytotoxic catalysis targets reactions designed to activate prodrugs. Natural or <em>de novo</em> proteins were developed for artificial enzyme catalysis of Diels–Alder reactions, or as artificial oxygenase mimics. Novel sulfur-rich catalytic superoxide dismutase (SOD) mimics were discovered as antioxidants. Detoxification of elevated levels of cyanide where the natural rhodanese enzyme becomes inefficient in turnover rates and bioavailability is particularly attractive for sulfur-rich molybdenum clusters. This brief overview includes metal catalysts performing abiotic reactions <em>in vivo</em> disguised by attachment to cell surfaces, as artificial enzymes, and interesting new sulfur-rich complexes performing SOD reactions or neutralizing cyanide.</div></div>","PeriodicalId":291,"journal":{"name":"Current Opinion in Chemical Biology","volume":"86 ","pages":"Article 102584"},"PeriodicalIF":6.9000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Chemical Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S136759312500016X","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Functional mimics of enzymes have a long history with bioinorganic chemists. Early motivation for creating these mimics was strongly based on the study of the enzyme reaction mechanisms. In more recent times, interest in functional mimics has expanded to catalytic metallodrugs, where the mimics are deliberately designed for specific catalytic reactions intended for therapeutic purposes. In vivo, noncytotoxic catalysis targets reactions designed to activate prodrugs. Natural or de novo proteins were developed for artificial enzyme catalysis of Diels–Alder reactions, or as artificial oxygenase mimics. Novel sulfur-rich catalytic superoxide dismutase (SOD) mimics were discovered as antioxidants. Detoxification of elevated levels of cyanide where the natural rhodanese enzyme becomes inefficient in turnover rates and bioavailability is particularly attractive for sulfur-rich molybdenum clusters. This brief overview includes metal catalysts performing abiotic reactions in vivo disguised by attachment to cell surfaces, as artificial enzymes, and interesting new sulfur-rich complexes performing SOD reactions or neutralizing cyanide.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Current Opinion in Chemical Biology
Current Opinion in Chemical Biology 生物-生化与分子生物学
CiteScore
13.30
自引率
1.30%
发文量
113
审稿时长
74 days
期刊介绍: COCHBI (Current Opinion in Chemical Biology) is a systematic review journal designed to offer specialists a unique and educational platform. Its goal is to help professionals stay informed about the growing volume of information in the field of Chemical Biology through systematic reviews.
期刊最新文献
Noncytotoxic catalytic enzyme functional mimics including cyanide poisoning antidotes Editorial Board Stimuli-responsive synthetic ionophores for therapeutic applications Corrigendum to “Enabling structural biological electron paramagnetic resonance spectroscopy in membrane proteins through spin labelling” Curr Opin Chem Biol 84 (2025) 102564 Lipid probes to study ion channels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1