Soliton interaction and nonlinear localized waves in one-dimensional nonlinear acoustic metamaterials

IF 2.7 3区 数学 Q1 MATHEMATICS, APPLIED Physica D: Nonlinear Phenomena Pub Date : 2025-03-10 DOI:10.1016/j.physd.2025.134591
Souleymanou Abbagari , Alphonse Houwe , Lanre Akinyemi , Serge Yamigno Doka
{"title":"Soliton interaction and nonlinear localized waves in one-dimensional nonlinear acoustic metamaterials","authors":"Souleymanou Abbagari ,&nbsp;Alphonse Houwe ,&nbsp;Lanre Akinyemi ,&nbsp;Serge Yamigno Doka","doi":"10.1016/j.physd.2025.134591","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we investigate soliton interactions and localized wave phenomena in nonlinear acoustic metamaterials with coupling coefficients. By employing the Lindstedt-Poincaré perturbation method and a multi-scale analysis, we derive the dispersion relation for the nonlinear Schrödinger equation. The dispersion curve reveals two propagation modes: the acoustic mode and the optical mode. Particular emphasis is placed on the dynamics of bright solitons in both low- and high-frequency bands, as well as energy propagation within the forbidden bandgap. Notably, soliton pairs emerge in the allowed phonon bands, illustrating their interaction characteristics. In the forbidden bandgap, we demonstrate that when the driving amplitude exceeds the supratransmission threshold, a train of pulses forms, leading to the generation of a dark soliton. These findings are supported by full numerical simulations of the nonlinear discrete coupled diatomic chain model. Furthermore, the modified model introduces novel features, making it a promising framework for exploring delocalized wave phenomena in future study.</div></div>","PeriodicalId":20050,"journal":{"name":"Physica D: Nonlinear Phenomena","volume":"476 ","pages":"Article 134591"},"PeriodicalIF":2.7000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica D: Nonlinear Phenomena","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278925000703","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we investigate soliton interactions and localized wave phenomena in nonlinear acoustic metamaterials with coupling coefficients. By employing the Lindstedt-Poincaré perturbation method and a multi-scale analysis, we derive the dispersion relation for the nonlinear Schrödinger equation. The dispersion curve reveals two propagation modes: the acoustic mode and the optical mode. Particular emphasis is placed on the dynamics of bright solitons in both low- and high-frequency bands, as well as energy propagation within the forbidden bandgap. Notably, soliton pairs emerge in the allowed phonon bands, illustrating their interaction characteristics. In the forbidden bandgap, we demonstrate that when the driving amplitude exceeds the supratransmission threshold, a train of pulses forms, leading to the generation of a dark soliton. These findings are supported by full numerical simulations of the nonlinear discrete coupled diatomic chain model. Furthermore, the modified model introduces novel features, making it a promising framework for exploring delocalized wave phenomena in future study.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Physica D: Nonlinear Phenomena
Physica D: Nonlinear Phenomena 物理-物理:数学物理
CiteScore
7.30
自引率
7.50%
发文量
213
审稿时长
65 days
期刊介绍: Physica D (Nonlinear Phenomena) publishes research and review articles reporting on experimental and theoretical works, techniques and ideas that advance the understanding of nonlinear phenomena. Topics encompass wave motion in physical, chemical and biological systems; physical or biological phenomena governed by nonlinear field equations, including hydrodynamics and turbulence; pattern formation and cooperative phenomena; instability, bifurcations, chaos, and space-time disorder; integrable/Hamiltonian systems; asymptotic analysis and, more generally, mathematical methods for nonlinear systems.
期刊最新文献
Editorial Board Accelerating flapping flight analysis: Reducing CFD dependency with a hybrid decision tree approach for swift velocity predictions Soliton interaction and nonlinear localized waves in one-dimensional nonlinear acoustic metamaterials Oscillatory instability and stability of stationary solutions in the parametrically driven, damped nonlinear Schrödinger equation Construction and analysis of multi-lump solutions of dispersive long wave equations via integer partitions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1