Experimental assessment of the stability and impact of water-based fracturing fluid with and without Triethanolamine (TEA)

Najeeb Anjum Soomro , Ubedullah Ansari , Bilal Shams , Muhammad Khan Memon , Darya Khan Bhutto , Zhang Rui , Yi Pan
{"title":"Experimental assessment of the stability and impact of water-based fracturing fluid with and without Triethanolamine (TEA)","authors":"Najeeb Anjum Soomro ,&nbsp;Ubedullah Ansari ,&nbsp;Bilal Shams ,&nbsp;Muhammad Khan Memon ,&nbsp;Darya Khan Bhutto ,&nbsp;Zhang Rui ,&nbsp;Yi Pan","doi":"10.1016/j.jfueco.2025.100137","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>This study develops a novel water-based fracturing fluid to address challenges of high water consumption, poor thermal stability, and inadequate proppant transport in conventional hydraulic fracturing fluids. Current fluids face limitations due to thermal degradation and environmental impact. To optimize performance, experimental analyses were conducted using water as the base fluid, with added gas condensate and various additives. Key assessments included viscosity measurements, stability tests across temperature ranges, and proppant fall rate evaluations.</div></div><div><h3>Methods</h3><div>The optimized formulation features a linear fluid with 45 cp viscosity and a crosslinked fluid enhanced to 135 cp through boric acid and a cross-linker. The addition of triethanolamine (TEA) further stabilized the fluid, reducing viscosity loss at higher temperatures. Comparative tests showed a 134 % viscosity increase in the crosslinked fluid, boosting proppant transport, while TEA addition decreased the proppant fall rate by 6.8 %.</div></div><div><h3>Findings</h3><div>Results confirm that the new fluid meets API standards, offering improved thermal stability and proppant transport efficiency, addressing key environmental concerns. This formulation represents a promising alternative for more effective and sustainable hydraulic fracturing.</div></div>","PeriodicalId":100556,"journal":{"name":"Fuel Communications","volume":"23 ","pages":"Article 100137"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel Communications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666052025000056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background

This study develops a novel water-based fracturing fluid to address challenges of high water consumption, poor thermal stability, and inadequate proppant transport in conventional hydraulic fracturing fluids. Current fluids face limitations due to thermal degradation and environmental impact. To optimize performance, experimental analyses were conducted using water as the base fluid, with added gas condensate and various additives. Key assessments included viscosity measurements, stability tests across temperature ranges, and proppant fall rate evaluations.

Methods

The optimized formulation features a linear fluid with 45 cp viscosity and a crosslinked fluid enhanced to 135 cp through boric acid and a cross-linker. The addition of triethanolamine (TEA) further stabilized the fluid, reducing viscosity loss at higher temperatures. Comparative tests showed a 134 % viscosity increase in the crosslinked fluid, boosting proppant transport, while TEA addition decreased the proppant fall rate by 6.8 %.

Findings

Results confirm that the new fluid meets API standards, offering improved thermal stability and proppant transport efficiency, addressing key environmental concerns. This formulation represents a promising alternative for more effective and sustainable hydraulic fracturing.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Kerosene-H2 blending effects on flame properties in a multi-fuel combustor Life cycle environmental assessment of Refuse-Derived Fuel (RDF) as an alternative to fossil fuels in cement production: A sustainable approach for mitigating carbon emissions Experimental assessment of the stability and impact of water-based fracturing fluid with and without Triethanolamine (TEA) Biofuel in Ghana: Potentials and strategies for policy implementation Chemical agents for enhanced oil recovery: A comparison of a switchable hydrophilic solvent and deep eutectic solvent
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1