{"title":"Financial risk management innovation in energy market: Evidence from a machine learning hybrid model","authors":"Zepei Li , Feng Ma , Xinjie Lu","doi":"10.1016/j.eneco.2025.108360","DOIUrl":null,"url":null,"abstract":"<div><div>This study employs a novel hybrid machine learning model that combines principal component analysis (PCA) and the least absolute shrinkage and selection operator (LASSO) methods. It explored the relationships between 19 kinds of commodities and 14 international stock market indices, taking the volatility of international stock market indices as a predictive factor. We discover that the LASSO-PCA model has significant predictive power for the energy market. Furthermore, through the analysis of different special periods (such as periods of high and low volatility, the COVID-19 pandemic, and the Russia-Ukraine conflict), it is verified that the model can still stably predict the energy market in various market environments. This research result showcases the application value of machine learning methods in analyzing the energy market, which is of great significance for financial risk management innovation and investor decision-making in the energy market.</div></div>","PeriodicalId":11665,"journal":{"name":"Energy Economics","volume":"144 ","pages":"Article 108360"},"PeriodicalIF":13.6000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Economics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0140988325001847","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
This study employs a novel hybrid machine learning model that combines principal component analysis (PCA) and the least absolute shrinkage and selection operator (LASSO) methods. It explored the relationships between 19 kinds of commodities and 14 international stock market indices, taking the volatility of international stock market indices as a predictive factor. We discover that the LASSO-PCA model has significant predictive power for the energy market. Furthermore, through the analysis of different special periods (such as periods of high and low volatility, the COVID-19 pandemic, and the Russia-Ukraine conflict), it is verified that the model can still stably predict the energy market in various market environments. This research result showcases the application value of machine learning methods in analyzing the energy market, which is of great significance for financial risk management innovation and investor decision-making in the energy market.
期刊介绍:
Energy Economics is a field journal that focuses on energy economics and energy finance. It covers various themes including the exploitation, conversion, and use of energy, markets for energy commodities and derivatives, regulation and taxation, forecasting, environment and climate, international trade, development, and monetary policy. The journal welcomes contributions that utilize diverse methods such as experiments, surveys, econometrics, decomposition, simulation models, equilibrium models, optimization models, and analytical models. It publishes a combination of papers employing different methods to explore a wide range of topics. The journal's replication policy encourages the submission of replication studies, wherein researchers reproduce and extend the key results of original studies while explaining any differences. Energy Economics is indexed and abstracted in several databases including Environmental Abstracts, Fuel and Energy Abstracts, Social Sciences Citation Index, GEOBASE, Social & Behavioral Sciences, Journal of Economic Literature, INSPEC, and more.