Singular bifurcations in a slow-fast modified Leslie-Gower model

IF 1.4 Q2 MATHEMATICS, APPLIED Results in Applied Mathematics Pub Date : 2025-03-12 DOI:10.1016/j.rinam.2025.100558
Roberto Albarran-García , Martha Alvarez-Ramírez , Hildeberto Jardón-Kojakhmetov
{"title":"Singular bifurcations in a slow-fast modified Leslie-Gower model","authors":"Roberto Albarran-García ,&nbsp;Martha Alvarez-Ramírez ,&nbsp;Hildeberto Jardón-Kojakhmetov","doi":"10.1016/j.rinam.2025.100558","DOIUrl":null,"url":null,"abstract":"<div><div>We study a predator–prey system with a generalist Leslie–Gower predator, a functional Holling type II response, and a weak Allee effect on the prey. The prey’s population often grows much faster than its predator, allowing us to introduce a small time scale parameter <span><math><mi>ɛ</mi></math></span> that relates the growth rates of both species, giving rise to a slow-fast system. Zhu and Liu (2022) show that, in the case of the weak Allee effect, Hopf singular bifurcation, slow-fast canard cycles, relaxation oscillations, etc. Our main contribution lies in the rigorous analysis of a degenerate scenario organized by a (degenerate) transcritical bifurcation. The key tool employed is the blow-up method that desingularizes the degenerate singularity. In addition, we determine the criticality of the singular Hopf bifurcation using recent intrinsic techniques that do not require a local normal form. The theoretical analysis is complemented by a numerical bifurcation analysis, in which we numerically identify and analytically confirm the existence of a nearby Takens–Bogdanov point.</div></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"26 ","pages":"Article 100558"},"PeriodicalIF":1.4000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037425000226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We study a predator–prey system with a generalist Leslie–Gower predator, a functional Holling type II response, and a weak Allee effect on the prey. The prey’s population often grows much faster than its predator, allowing us to introduce a small time scale parameter ɛ that relates the growth rates of both species, giving rise to a slow-fast system. Zhu and Liu (2022) show that, in the case of the weak Allee effect, Hopf singular bifurcation, slow-fast canard cycles, relaxation oscillations, etc. Our main contribution lies in the rigorous analysis of a degenerate scenario organized by a (degenerate) transcritical bifurcation. The key tool employed is the blow-up method that desingularizes the degenerate singularity. In addition, we determine the criticality of the singular Hopf bifurcation using recent intrinsic techniques that do not require a local normal form. The theoretical analysis is complemented by a numerical bifurcation analysis, in which we numerically identify and analytically confirm the existence of a nearby Takens–Bogdanov point.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Results in Applied Mathematics
Results in Applied Mathematics Mathematics-Applied Mathematics
CiteScore
3.20
自引率
10.00%
发文量
50
审稿时长
23 days
期刊最新文献
Optimal harvest under a Gilpin–Ayala model driven by the Hawkes process An integral representation of the local time of the Brownian motion via the Clark–Ocone formula Asymptotic analysis of solutions of delay difference equations Shared-endpoint correlations and hierarchy in random flows on graphs Singular bifurcations in a slow-fast modified Leslie-Gower model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1