Optimized fertilization strategies enhanced integrated benefits in nutrient management for open-field cabbage production

IF 4.8 Q1 AGRICULTURE, MULTIDISCIPLINARY Journal of Agriculture and Food Research Pub Date : 2025-03-06 DOI:10.1016/j.jafr.2025.101801
Mengjiao Liu , Xiya Wang , Binggeng Yang , Dali Song , Xinpeng Xu , Wencheng Ding , Ping He , Wei Zhou
{"title":"Optimized fertilization strategies enhanced integrated benefits in nutrient management for open-field cabbage production","authors":"Mengjiao Liu ,&nbsp;Xiya Wang ,&nbsp;Binggeng Yang ,&nbsp;Dali Song ,&nbsp;Xinpeng Xu ,&nbsp;Wencheng Ding ,&nbsp;Ping He ,&nbsp;Wei Zhou","doi":"10.1016/j.jafr.2025.101801","DOIUrl":null,"url":null,"abstract":"<div><div>Excessive nutrient input in cabbage (<em>Brassica oleracea</em> var. <em>capitata</em> L.) production not only results in wasted fertilizer application and potential decline in quality, but may also fail to further increase yield. Additionally, it can damage the health of the agroecosystem. However, it is unknown whether optimized fertilization can balance all these benefits. Here, a meta-analysis was conducted using a dataset of 72 paired observations in China to synthesize the response of cabbage yield, quality, farmers' income, net ecosystem economic benefit (NEEB), and global warming potential (GWP) to optimized fertilization and its regulators. We found that optimized fertilization significantly increased cabbage yield by average 10 % and farmers' income by average 12 % with 11–23 % less fertilizer applied. Optimized fertilization significantly improved the quality of cabbage, such as soluble sugar and vitamin C. Furthermore, optimized fertilization significantly enhanced NEEB and mitigated GWP to the environment. No significant differences in optimized fertilization effect were found between optimizing the chemical fertilization rate (OCF) and optimizing chemical fertilizer combined with organic fertilizer application (OCFM). The ratio of N application rate between optimized fertilization and farmers’ fertilizer practice was the dominant driver affecting the yield and quality of cabbage in the OCF treatment. While, there was no uniform factor affecting the yield and quality of cabbage in the OCFM treatment. These results highlight the multiple mechanisms of optimized fertilization methods in controlling yield and quality of cabbage. In future studies, conducting extensive field fertilization trials is essential for gaining insight into how various agronomic practices affect cabbage production. This knowledge will be crucial for optimizing these practices to maximize the comprehensive benefits of vegetable cultivation.</div></div>","PeriodicalId":34393,"journal":{"name":"Journal of Agriculture and Food Research","volume":"20 ","pages":"Article 101801"},"PeriodicalIF":4.8000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agriculture and Food Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666154325001723","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Excessive nutrient input in cabbage (Brassica oleracea var. capitata L.) production not only results in wasted fertilizer application and potential decline in quality, but may also fail to further increase yield. Additionally, it can damage the health of the agroecosystem. However, it is unknown whether optimized fertilization can balance all these benefits. Here, a meta-analysis was conducted using a dataset of 72 paired observations in China to synthesize the response of cabbage yield, quality, farmers' income, net ecosystem economic benefit (NEEB), and global warming potential (GWP) to optimized fertilization and its regulators. We found that optimized fertilization significantly increased cabbage yield by average 10 % and farmers' income by average 12 % with 11–23 % less fertilizer applied. Optimized fertilization significantly improved the quality of cabbage, such as soluble sugar and vitamin C. Furthermore, optimized fertilization significantly enhanced NEEB and mitigated GWP to the environment. No significant differences in optimized fertilization effect were found between optimizing the chemical fertilization rate (OCF) and optimizing chemical fertilizer combined with organic fertilizer application (OCFM). The ratio of N application rate between optimized fertilization and farmers’ fertilizer practice was the dominant driver affecting the yield and quality of cabbage in the OCF treatment. While, there was no uniform factor affecting the yield and quality of cabbage in the OCFM treatment. These results highlight the multiple mechanisms of optimized fertilization methods in controlling yield and quality of cabbage. In future studies, conducting extensive field fertilization trials is essential for gaining insight into how various agronomic practices affect cabbage production. This knowledge will be crucial for optimizing these practices to maximize the comprehensive benefits of vegetable cultivation.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.40
自引率
2.60%
发文量
193
审稿时长
69 days
期刊最新文献
Rare earth elements: Between technological critical elements and emerging contaminants Public health risks associated with antibiotic residues in poultry food products Investigation on some quality parameters of probiotic UF-Iranian white cheese containing caffeine Texture and physicochemical analysis of Creole beef at different aging times: Differences between sex and age Meat replacers as part of sustainable food systems in Romania: A causal network model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1